2,025 research outputs found

    Domain Walls in a FRW Universe

    Full text link
    We solve the equations of motion for a scalar field with domain wall boundary conditions in a Friedmann-Robertson-Walker (FRW) spacetime. We find (in agreement with Basu and Vilenkin) that no domain wall solutions exist in de Sitter spacetime for h = H/m >= 1/2, where H is the Hubble parameter and m is the scalar mass. In the general FRW case we develop a systematic perturbative expansion in h to arrive at an approximate solution to the field equations. We calculate the energy momentum tensor of the domain wall configuration, and show that the energy density can become negative at the core of the defect for some values of the non-minimal coupling parameter xi. We develop a translationally invariant theory for fluctuations of the wall, obtain the effective Lagrangian for these fluctuations, and quantize them using the Bunch-Davies vacuum in the de Sitter case. Unlike previous analyses, we find that the fluctuations act as zero-mass (as opposed to tachyonic) modes. This allows us to calculate the distortion and the normal-normal correlators for the surface. The normal-normal correlator decreases logarithmically with the distance between points for large times and distances, indicating that the interface becomes rougher than in Minkowski spacetime.Comment: 23 pages, LaTeX, 7 figures using epsf.tex. Now auto-generates P

    BARYON-BARYON INTERACTIONS IN LARGE N_C CHIRAL PERTURBATION THEORY

    Full text link
    Interactions of two baryons are considered in large NCN_C chiral perturbation theory and compared to the interactions derived from the Skyrme model. Special attention is given to a torus-like configuration known to be present in the Skyrme model.Comment: 18 pages, REVTEX, 8 uuencoded PS figures appende

    On dynamical adjoint functor

    Full text link
    We give an explicit formula relating the dynamical adjoint functor and dynamical twist over nonalbelian base to the invariant pairing on parabolic Verma modules. As an illustration, we give explicit U(sl(n))U(sl(n))- and U(sl(n))U_\hbar(sl(n))-invariant star product on projective spaces

    Strong Λπ\Lambda \pi Phase Shifts for CP Violation in Weak ΞΛπ\Xi \rightarrow \Lambda \pi Decay

    Full text link
    Strong interaction Λπ\Lambda\pi phase shifts relevant for the weak nonleptonic decay ΞΛπ\Xi \rightarrow \Lambda \pi are calculated using baryon chiral perturbation theory. We find in leading order that the S-wave phase shift vanishes and the J=12J={1 \over 2} P-wave phase shift is 1.7o-1.7 ^{\rm o} . The small phase shifts imply that CP violation in this decay will be difficult to observe. Our results follow from chiral SU(2)L×SU(2)RSU(2)_L\times SU(2)_R symmetry.Comment: 8 pages, uses phyzzx, 2 figures included as uuencoded file, CALT-68-1940 and CMU-HEP94-2

    A lecture on the Liouville vertex operators

    Full text link
    We reconsider the construction of exponential fields in the quantized Liouville theory. It is based on a free-field construction of a continuous family or chiral vertex operators. We derive the fusion and braid relations of the chiral vertex operators. This allows us to simplify the verification of locality and crossing symmetry of the exponential fields considerably. The calculation of the matrix elements of the exponential fields leads to a constructive derivation of the formula proposed by Dorn/Otto and the brothers Zamolodchikov.Comment: Contribution to the proceedings of the 6th International Conference on CFTs and Integrable Models, Chernogolovka, Russia, 2002 v2: Remarks added, typos correcte

    A Note on Background (In)dependence

    Full text link
    In general quantum systems there are two kinds of spacetime modes, those that fluctuate and those that do not. Fluctuating modes have normalizable wavefunctions. In the context of 2D gravity and ``non-critical'' string theory these are called macroscopic states. The theory is independent of the initial Euclidean background values of these modes. Non-fluctuating modes have non-normalizable wavefunctions and correspond to microscopic states. The theory depends on the background value of these non-fluctuating modes, at least to all orders in perturbation theory. They are superselection parameters and should not be minimized over. Such superselection parameters are well known in field theory. Examples in string theory include the couplings tkt_k (including the cosmological constant) in the matrix models and the mass of the two-dimensional Euclidean black hole. We use our analysis to argue for the finiteness of the string perturbation expansion around these backgrounds.Comment: 16 page

    Atomic site sensitive processes in low energy ion-dimer collisions

    Get PDF
    Electron capture processes for low energy Ar9+ ions colliding on Ar2 dimer targets are investigated, focusing attention on charge sharing as a function of molecule orientation and impact parameter. A preference in charge-asymmetric dissociation channels is observed, with a strong correlation between the projectile scattering angle and the molecular ion orientation. The measurements provide here clear evidences that projectiles distinguish each atom in the target and, that electron capture from near-site atom is favored. Monte Carlo calculations based on the classical over-the-barrier model, with dimer targets represented as two independent atoms, are compared to the data. They give a new insight into the dynamics of the collision by providing, for the di erent electron capture channels, the two-dimensional probability maps p(~b), where ~b is the impact parameter vector in the molecular frame

    On the Classical W4(2)W_{4}^{(2)} Algebra

    Full text link
    We consider the classical \w42 algebra from the integrable system viewpoint. The integrable evolution equations associated with the \w42 algebra are constructed and the Miura maps , consequently modifications, are presented. Modifying the Miura maps, we give a free field realization the classical \w42 algebra. We also construct the Toda type integrable systems for it.Comment: 14 pages, latex, no figure

    Classical Scattering in 1+11+1 Dimensional String Theory

    Full text link
    We find the general solution to Polchinski's classical scattering equations for 1+11+1 dimensional string theory. This allows efficient computation of scattering amplitudes in the standard Liouville ×\times c=1c=1 background. Moreover, the solution leads to a mapping from a large class of time-dependent collective field theory backgrounds to corresponding nonlinear sigma models. Finally, we derive recursion relations between tachyon amplitudes. These may be summarized by an infinite set of nonlinear PDE's for the partition function in an arbitrary time-dependent background.Comment: 15 p

    Correlation functions in super Liouville theory

    Full text link
    We calculate three- and four-point functions in super Liouville theory coupled to super Coulomb gas on world sheets with spherical topology. We first integrate over the zero mode and assume that a parameter takes an integer value. After calculating the amplitudes, we formally continue the parameter to an arbitrary real number. Remarkably the result is completely parallel to the bosonic case, the amplitudes being of the same form as those of the bosonic case.Comment: 11 page
    corecore