46 research outputs found
Architecture of a nascent viral fusion pore
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virusâliposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of âleaky' fusion to the observed prefusion structures is discussed
Verwertung von textilen Abfallstoffen zur Herstellung von Faser-Bindemittel-Kombinationswerkstoffen Sachbericht
SIGLEAvailable from TIB Hannover: F96B1206+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman
Principles governing recruitment of motoneurons during swimming in zebrafish
Locomotor movements are coordinated by a network of neurons that produces sequential muscle activation. Different motoneurons need to be recruited in an orderly manner to generate movement with appropriate speed and force. However, the mechanisms governing recruitment order have not been fully clarified. Using an in vitro juvenile/adult zebrafish brainstemâspinal cord preparation, we found that motoneurons were organized into four pools with specific topographic locations and were incrementally recruited to produce swimming at different frequencies. The threshold of recruitment was not dictated by the input resistance of motoneurons, but was instead set by a combination of specific biophysical properties and the strength of the synaptic currents. Our results provide insights into the cellular and synaptic computations governing recruitment of motoneurons during locomotio