73 research outputs found
Exploring the African cassava (Manihot esculenta Crantz) germplasm for somatic embryogenic competence
Somatic-embryogenic competence of eleven cassava genotypes was determined in induction media containing 8 and 12 mg/l of the auxin picloram, using axillary meristems and leaf lobes as explants.There were significant differences (
Aflatoxin and fumonisin mycotoxins contamination along the maize value chain in the eastern Democratic Republic of Congo
Aflatoxin and fumonisin contamination was assessed in different samples along the maize value chain in different territories of South Kivu province. Kabare and Ruzizi Plain were chosen as they represent two different agroecological areas where maize is mostly produced. Twelve districts and one town were selected across the province. The stakeholders were randomly selected, and 215 maize (139 maize grain and 76 maize flour) samples were taken for laboratory analysis. The Q + kit was used to determine the total aflatoxins and fumonisins. Three categories of maize were examined: freshly harvested dry maize, stored maize (maize stored for 3 months ±1.5 month) and market maize. Aflatoxin was found in 100% of the maize samples with the least content of 0.3 μg/kg detected in freshly harvested dry maize with mean 3.2+0.3 and levels ranging from 0.3 to 18.5 μg/kg. The average level of aflatoxin in stored grain samples was 97.9±182 μg/kg within a range of 1.16 to 841.5 μg/kg, and the mean level of aflatoxin in stored flour was 148.9±164.5 μg/kg with levels ranging from 2.05 to 905.1 μg/kg. The mean level of aflatoxin maize collected from the market was 95.1 ±164 μg/kg, with levels ranging from 1 to 823.2 μg/kg. Almost all the maize flour collected from the three areas had a high contamination level that exceeded the maximum tolerable limit of 10 μg/kg. Fumonisin was detected in all samples. However, the levels of fumonisin do not follow a specific trend with the duration of storage. The freshly harvested dry maize concentration was 2.4±5.1 μg/g, with levels ranging from 0.03 to 20.9μg/g. About 37% of freshly harvested maize samples contaminated by fumonisin exceeded the maximum tolerable limit of 4 μg/kg. There was a difference between total fumonisin in grain and flour; the average level of fumonisin in stored maize grain was 1.4±0.9 μg/g with levels ranging from 0.18- 4.7 μg/g while in flour, the level was 2.1±1.3 μg/g with levels ranging from 0.3-4.5 μg/g. Almost all the maize samples collected from the three areas had a degree of contamination that did not exceed the maximum tolerable limit of 4 μg/g. These results indicate that the two mycotoxin levels, particularly aflatoxin, were high in the different samples collected at specific nodes. Therefore, preventing mycotoxins accumulation in maize by post-harvest prevention of contamination and growth of toxigenic moulds by promoting proper grain drying and storage should be encouraged among the actors of the maize value chain. 
Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus
Published online: 27 Oct 2015Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers’ income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination.
However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agroecological zones of Nigeria were used in this study.
Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co-inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non-utilizing (nit−) mutants. To determine genetic diversity and distribution of VCGs across agroecological
zones, 832 nit− mutants from 52 locations in 11 administrative districts were paired with one self-complementary nitrate auxotroph tester-pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro-ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5 = 0.96) of VCGs were high across all agro-ecological zones. Ten VCGs (40%) had members restricted to the original location
of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance > 400 km away. The present study identified widely distributed VCGs in Nigeria such as AV0222, AV3279, AV3304 and AV16127, whose atoxigenic members can be deployed for a region-wide biocontrol of toxigenic isolates to reduce aflatoxin contamination in maize
Biological control of aflatoxins in maize and groundnut through use of aflasafe products developed for Ghana
United States Agency for International Developmen
An assessment of willingness to pay by maize and groundnut farmers for aflatoxin biocontrol product in northern Nigeria
Article purchased; Published online: 7 August, 2017In Nigeria, Aflasafe is a registered biological product for reducing aflatoxin infestation of crops from the field to storage, making the crops safer for consumption. The important questions are whether farmers will purchase and apply this product to reduce aflatoxin contamination of crops, and if so under what conditions. A study was carried out to address these questions and assess determinants of willingness to pay (WTP) for the product among maize and groundnut farmers in Kano and Kaduna states in Nigeria. A multistage sampling technique was used to collect primary data from 492 farmers. The majority of farmers who had direct experience with Aflasafe (experienced farmers) in Kano (80.7%) and Kaduna (84.3%) had a WTP bid value equal to or greater than the threshold price (3.56 and $7.46 were offered in Kano and Kaduna states, respectively, by farmers who had never applied Aflasafe (inexperienced farmers), and the difference here was significant (P < 0.01). Regression results indicate that contact with extension agents (P < 0.01) and access to credit (P < 0.05) positively and significantly influenced the probability that a farmer would be willing to pay more for Aflasafe than the threshold price. Lack of awareness of the importance of Aflasafe was the major reason cited by inexperienced farmers (64% in Kano state and 21% in Kaduna state) for not using the product. A market strategy promoting a premium price for aflatoxin-safe produce and creating awareness and explaining the availability of Aflasafe to potential users should increase Aflasafe usage
Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change
Article purchased; in PressAflatoxin contamination of crops is frequent in warm regions across the globe, including large areas in sub-Saharan Africa. Crop contamination with these dangerous toxins transcends health, food security, and trade sectors. It cuts across the value chain, affecting farmers, traders, markets, and finally consumers. Diverse fungi within Aspergillus section Flavi contaminate crops with aflatoxins. Within these Aspergillus communities, several genotypes are not capable of producing aflatoxins (atoxigenic). Carefully selected atoxigenic genotypes in biological control (biocontrol) formulations efficiently reduce aflatoxin contamination of crops when applied prior to flowering in the field. This safe and environmentally friendly, effective technology was pioneered in the US, where well over a million acres of susceptible crops are treated annually. The technology has been improved for use in sub-Saharan Africa, where efforts are under way to develop biocontrol products, under the trade name Aflasafe, for 11 African nations. The number of participating nations is expected to increase. In parallel, state of the art technology has been developed for large-scale inexpensive manufacture of Aflasafe products under the conditions present in many African nations. Results to date indicate that all Aflasafe products, registered and under experimental use, reduce aflatoxin concentrations in treated crops by >80% in comparison to untreated crops in both field and storage conditions.
Benefits of aflatoxin biocontrol technologies are discussed along with potential challenges, including climate change, likely to be faced during the scaling-up of Aflasafe products. Lastly, we respond to several apprehensions expressed in the literature about the use of atoxigenic genotypes in biocontrol formulations. These responses relate to the following apprehensions: sorghum as carrier, distribution costs, aflatoxin-conscious markets, efficacy during drought, post-harvest benefits, risk of allergies and/or aspergillosis, influence of Aflasafe on other mycotoxins and on soil microenvironment, dynamics of Aspergillus genotypes, and recombination between atoxigenic and toxigenic genotypes in natural conditions
Impact of frequency of application on the long-term efficacy of the biocontrol product Aflasafe in reducing aflatoxin contamination in maize
Aflatoxins, produced by several Aspergillus section Flavi species in various crops, are a significant public health risk and a barrier to trade and development. In sub-Saharan Africa, maize and groundnut are particularly vulnerable to aflatoxin contamination. Aflasafe, a registered aflatoxin biocontrol product, utilizes atoxigenic A. flavus genotypes native to Nigeria to displace aflatoxin
producers and mitigate aflatoxin contamination. Aflasafe was evaluated in farmers’ fields for 3 years, under various regimens, to quantify carry-over of the biocontrol active ingredient genotypes. Nine maize fields were each treated either continuously for 3 years, the first two successive years, in year 1 and year 3, or once during the first year. For each treated field, a nearby untreated
field was monitored. Aflatoxins were quantified in grain at harvest and after simulated poor storage. Biocontrol efficacy and frequencies of the active ingredient genotypes decreased in the absence of annual treatment. Maize treated consecutively for 2 or 3 years had significantly (p < 0.05) less aflatoxin (92% less) in grain at harvest than untreated maize. Maize grain from treated
fields subjected to simulated poor storage had significantly less (p < 0.05) aflatoxin than grain from untreated fields, regardless of application regimen. Active ingredients occurred at higher frequencies in soil and grain from treated fields than from untreated fields. The incidence of active ingredients recovered in soil was significantly correlated (r = 0.898; p < 0.001) with the incidence of
active ingredients in grain, which in turn was also significantly correlated (r = −0.621, p = 0.02) with aflatoxin concentration. Although there were carryover effects, caution should be taken when drawing recommendations about discontinuing biocontrol use. Cost–benefit analyses of single season and carry-over influences are needed to optimize use by communities of smallholder farmers in sub-Saharan Africa
- …