281 research outputs found

    Developing an agro-forestry system for production of a commercial organic chicken flock focusing on profits on a 'Triple bottom Line'

    Get PDF
    In most modern free-range poultry systems birds do not fully utilise the range provided. Knowledge of the ancestral history of the domestic chicken, and research observations suggests benefits of agro-forestry systems for chickens. A commercial organic poultry agro-forestry system was developed for Sheepdrove Organic Farm, Berkshire, UK, affording the benefi ts of an agro-forestry system, whilst retaining commercial viability. Five avenues of highly diverse parallel hedges incorporating tree, shrub and herb species were planted. On-going monitoring of the system was put in place to evaluate its development and help assess the types of ‘profits’ the system delivers. Conventionally profits tend to be viewed purely in terms of economic gain. However, in an organic farming system more emphasis is placed on the intrinsic and sustainable qualities it has. Organic farming adopts a holistic approach to profit, viewing it in environmental, social and economic terms. The profits afforded by the system are discussed

    Understanding and Predicting Foam in Anaerobic Digester

    Get PDF
    As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has not fully explained the conditions and process of foaming in anaerobic digester. Studying the current available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this piece of work presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system

    Systems biology approach to elucidation of contaminants biodegradation in complex samples- integration of high-resolution analytical and molecular tools

    Get PDF
    We present here a data-driven systems biology framework to the rational design of biotechnological solutions for contaminated environments with the aim of understanding the interactions and mechanisms underpinning the role of microbial communities in the biodegradation of contaminated soils. We have considered a multi-omics approach which employs novel in silico tools to combine high-throughput sequencing data (16S rRNA amplicons) with the chemical data including high-resolution analytical data generated by comprehensive two-dimensional gas chromatography (GCxGC). To assess this approach, we have considered a matching dataset with both microbiological and chemical signatures available for samples from two former manufactured gas plant sites. On this dataset, we applied the numerical procedures informed by ecological principles (predominantly diversity measures) as well as recently published statistical approaches that give discriminatory features and their correlations by maximizing the covariances between multiple datasets on the same sample space. In particular, we have utilized sparse projection to latent discriminant analysis and its derivative to multiple datasets, an N-integration algorithm called DIABLO. Our results indicate microbial community structure dependent on the contaminated environment and unravel promising interactions of some of the microbial species with the biodegradation potential. To the best of our knowledge, this is the first study that incorporates with microbiome an unprecedented high-level distribution of hydrocarbons obtained through GC x GC

    Spatial patterns in soil organic matter dynamics are shaped by mycorrhizosphere interactions in a treeline forest

    Get PDF
    Aims In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes. Methods We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR. Results Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees. Conclusions As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration

    Vitamin D supplementation for patients with chronic kidney disease: A systematic review and meta-analyses of trials investigating the response to supplementation and an overview of guidelines

    Get PDF
    A large proportion of patients with chronic kidney disease (CKD) are vitamin D deficient (plasma 25-hydroxyvitamin D (25(OH)D) < 25 or 30 nmol/L per UK and US population guidelines) and this contributes to the development of CKD–mineral bone disease (CKD–MBD). Gaps in the evidence-base for the management of vitamin D status in relation to CKD–MBD are hindering the formulation of comprehensive guidelines. We conducted a systemic review of 22 RCTs with different forms of vitamin D or analogues with CKD–MBD related outcomes and meta-analyses for parathyroid hormone (PTH). We provide a comprehensive overview of current guidelines for the management of vitamin D status for pre-dialysis CKD patients. Vitamin D supplementation had an inconsistent effect on PTH concentrations and meta-analysis showed non- significant reduction (P = 0.08) whereas calcifediol, calcitriol and paricalcitol consistently reduced PTH. An increase in Fibroblast Growth Factor 23 (FGF23) with analogue administration was found in all 3 studies reporting FGF23, but was unaltered in 4 studies with vitamin D or calcifediol. Few RCTS reported markers of bone metabolism and variations in the range of markers prevented direct comparisons. Guidelines for CKD stages G1–G3a follow general population recommendations. For the correction of deficiency general or CKD-specific patient guidelines provide recommendations. Calcitriol or analogues administration is restricted to stages G3b–G5 and depends on patient characteristics. In conclusion, the effect of vitamin D supplementation in CKD patients was inconsistent between studies. Calcifediol and analogues consistently suppressed PTH, but the increase in FGF23 with calcitriol analogues warrants caution

    Food for Thought: the Efficiency of Glucose Metabolism Predicts the Self-generation of Temporally Distant Cognition

    Get PDF
    The generation of thought independent of environmental input occupies almost half of mental life and is important for skills such as creativity and planning. To understand how this ubiquitous cognitive process relates to the brain's ‘energy budget’, a cross-sectional study is carried out to examine how the capacity for mental time travel relates to the efficiency with which adults metabolize glucose, the brain’s primary source of fuel. On day 1 the ability of a group of 36 younger and 36 older individuals to metabolize glucose was assessed using the gold standard two-hour glucose tolerance test. Twenty-four hours later, the same group of participants returned to the laboratory to perform a non-demanding choice reaction time task during which experience sampling was used to assess the frequency with which they generated thoughts that were unrelated to the here and now. Analysis indicated that younger individuals who were the most efficient at metabolizing glucose exhibited mental time travel that spanned longer time periods. Given the importance of self-generated thought in daily life these results suggest that the capacity to mentally simulate events not present in the immediate environment is highly dependent on efficient glucose metabolis
    • …
    corecore