262 research outputs found

    Psychological elements explaining the consumer's adoption and use of a website recommendation system: A theoretical framework proposal

    Get PDF
    The purpose of this paper is to understand, with an emphasis on the psychological perspective of the research problem, the consumer's adoption and use of a certain web site recommendation system as well as the main psychological outcomes involved. The approach takes the form of theoretical modelling. Findings: A conceptual model is proposed and discussed. A total of 20 research propositions are theoretically analyzed and justified. Research limitations/implications: The theoretical discussion developed here is not empirically validated. This represents an opportunity for future research. Practical implications: The ideas extracted from the discussion of the conceptual model should be a help for recommendation systems designers and web site managers, so that they may be more aware, when working with such systems, of the psychological process consumers undergo when interacting with them. In this regard, numerous practical reflections and suggestions are presented

    Novel tools for early detection of a global aquatic invasive, the zebra mussel Dreissena polymorpha

    Get PDF
    1. This study presents a species-specific DNA-based marker for detection of the zebra mussel Dreissena polymorpha, recognized as one of the worst invasive species worldwide. 2. The marker was developed in silico and experimentally tested on environmental samples. Gel and capillary electrophoreses for visualization of the PCR products were compared. 3. Marker specificity and sensitivity were assessed in vitro by cross-amplifications and serial dilutions, respectively. The method allows detecting at least 0.7 ng of Dreissena DNA per μL and cross-species amplification was not found in any case. 4. Next-generation sequencing (NGS) metabarcoding (PCR amplification and massive sequencing of a DNA barcode) was used as an independent method for verifying presence of Dreissena DNA molecules in environmental plankton samples collected from the south-eastern Baltic Sea. 5. The consistency between NGS results reporting presence of Dreissena and positive PCR amplification of the marker from the plankton samples confirmed the efficacy of this highly reproducible, fast, cheap and technically easy method

    DNA barcoding for assessment of exotic molluscs associated with maritime ports in northern Iberia

    Get PDF
    Ports are gateways for aquatic invasions. New arrivals from maritime traffic and disturbed environmental conditions can promote the settlement of exotic species. Molluscs fall into the most prevalent group of invasive species and can have a tremendous impact on aquatic ecosystems. Here we have investigated exotic molluscs in three ports with different intensities of maritime traffic in the Cantabrian Sea. DNA barcodes were employed to identify the species using BLASTn and BOLD IDS assignment. Deep morphological analysis using diagnostic criteria confirmed BLAST species assignation based on COI and 16S rRNA genes. Results confirmed the usefulness of DNA barcoding for detecting exotic species that are visually similar to native species. Three exotic bivalves were identified: Ostrea stentina (dwarf oyster), the highly invasive Crassostrea gigas (Pacific oyster) and Xenostrobus securis (pygmy mussel). This is the first record of O. stentina in the Bay of Biscay and the second of X. securis in the Cantabrian Sea. Furthermore, we report on the presence of the cryptogenic mussel Mytilaster minimus in the central Cantabrian Sea. These exotic species might have been overlooked due to their phenotypic similarity with co-occurring oyster and mussel species. This study illustrates how combining morphological and DNA taxonomic analysis can help in port and marina biosecurity surveys

    Detection and characterisation of the biopollutant Xenostrobus securis (Lamarck 1819) Asturian population from DNA Barcoding and eBarcoding

    Get PDF
    DNA efficiently contributes to detect and understand marine invasions. In 2014 the potential biological pollutant pygmy mussel (Xenostrobus securis)was observed for the first time in the Avilés estuary (Asturias, Bay of Biscay). The goal of this study was to assess the stage of invasion, based on demographic and genetic (DNA Barcoding) characteristics, and to develop a molecular tool for surveying the species in environmental DNA. A total of 130 individuals were analysed for the DNA Barcode cytochrome oxidase I gene in order to determine genetic diversity, population structure, expansion trends, and to inferring introduction hits. Reproductionwas evidenced by bimodal size distributions of 1597 mussels. High population genetic variation and genetically distinct clades might suggest multiple introductions from several source populations. Finally, species-specific primers were developed within the DNA barcode for PCR amplification from water samples in order to enabling rapid detection of the species in initial expansion stages

    Genetic regulation of RNA splicing in human pancreatic islets

    Get PDF
    Background Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. Results We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. Conclusions These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.This research was supported by Ministerio de Ciencia e Innovación (BFU2014-54284-R, RTI2018-095666-B-I00), Medical Research Council (MR/L02036X/1), a Wellcome Trust Senior Investigator Award (WT101033), European Research Council Advanced Grant (789055), EU Horizon 2020 TDSystems (667191), ESPACE (874710), and Marie Sklodowska-Curie (643062, ZENCODE). S.B.G was supported by a Juan de la Cierva postdoctoral fellowship (MINECO; FJCI-2017-32090). M.C.A was supported by a Boehringer Ingelheim Fonds PhD fellowship. Work in CRG was supported by the CERCA Programme, Generalitat de Catalunya, Centro de Excelencia Severo Ochoa (CEX2020-001049), and support of the Spanish Ministry of Science and Innovation to the EMBL partnership. Work in Imperial College was supported by NIHR Imperial Biomedical Research Centre. M.I. was supported by a European Research Council consolidator award (101002275). D.J.M.C. and J.A.T. were supported by JDRF grants 9-2011-253, 5-SRA-2015-130-A-N, 4- SRA-2017-473-A-N, and Wellcome grants 091157/Z/10/Z and 107212/Z/15/Z, to the Diabetes and Inflammation Laboratory, Oxford, as well as the Oxford Biomedical Research Computing (BMRC) facility, a joint development between the Wellcome Centre for Human Genetics and the Big Data Institute supported by Health Data Research UK and NIHR Oxford Biomedical Research Centre, and Wellcome Trust Core Award grant 203141/Z/16/Z. D.M.J.C analysis with the UK Biobank Resource was conducted under Application 31295. A.L.G. is a Wellcome Senior Fellow in Basic Biomedical Science and was supported by the Wellcome Trust (095101, 200837, 106130, 203141), the NIDDK (U01DK105535 and UM1 DK126185), and the Oxford NIHR Biomedical Research Centre.Peer Reviewed"Article signat per 20 autors/es: Goutham Atla, Silvia Bonàs-Guarch, Mirabai Cuenca-Ardura, Anthony Beucher, Daniel J. M. Crouch, Javier Garcia-Hurtado, Ignasi Moran, the T2DSystems Consortium, Manuel Irimia, Rashmi B. Prasad, Anna L. Gloyn, Lorella Marselli, Mara Suleiman, Thierry Berney, Eelco J. P. de Koning, Julie Kerr-Conte, Francois Pattou, John A. Todd, Lorenzo Piemonti & Jorge Ferrer"Postprint (published version

    Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains

    Full text link
    Objectives: Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTHrelated protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods: We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results: We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H 2 O 2 )-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H 2 O 2 on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion: These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP.This work has been funded by grants from the Fundacion para la Investigacion Osea y Metabolismo Mineral-FEIOMM and the Instituto de Salud Carlos III (PI11/00449, PI15/00340, PI1600065, RD12/0043/0029, RD12/0043/0008 and RD12/0043/0018,). J. A. Ardua, D. Lozano, and S. Portal-Nunez are recipients of postdoctoral contracts from the Ministerio de Economia y Competitividad, Juan de la Cierva program JCI-2011-09548, FPDI-2013-17268, and RETICEF [FEDER “una manera de hacer Europa” (RD12/0043/0008)

    Understanding asthma phenotypes: the World Asthma Phenotypes (WASP) international collaboration.

    Get PDF
    The World Asthma Phenotypes (WASP) study started in 2016 and has been conducted in five centres, in the UK, New Zealand, Brazil, Ecuador and Uganda. The objectives of this study are to combine detailed biomarker and clinical information in order to 1) better understand and characterise asthma phenotypes in high-income countries (HICs) and low and middle-income countries (LMICs), and in high and low prevalence centres; 2) compare phenotype characteristics, including clinical severity; 3) assess the risk factors for each phenotype; and 4) assess how the distribution of phenotypes differs between high prevalence and low prevalence centres. Here we present the rationale and protocol for the WASP study to enable other centres around the world to carry out similar analyses using a standardised protocol. Large collaborative and integrative studies like this are essential to further our understanding of asthma phenotypes. The findings of this study will help elucidate the aetiological mechanisms of asthma and might potentially identify new causes and guide the development of new treatments, thereby enabling better management and prevention of asthma in both HICs and LMICs

    Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels

    Get PDF
    Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants
    corecore