79,493 research outputs found

    Using surveys of Affymetrix GeneChips to study antisense expression.

    Get PDF
    We have used large surveys of Affymetrix GeneChip data in the public domain to conduct a study of antisense expression across diverse conditions. We derive correlations between groups of probes which map uniquely to the same exon in the antisense direction. When there are no probes assigned to an exon in the sense direction we find that many of the antisense groups fail to detect a coherent block of transcription. We find that only a minority of these groups contain coherent blocks of antisense expression suggesting transcription. We also derive correlations between groups of probes which map uniquely to the same exon in both sense and antisense direction. In some of these cases the locations of sense probes overlap with the antisense probes, and the sense and antisense probe intensities are correlated with each other. This configuration suggests the existence of a Natural Antisense Transcript (NAT) pair. We find the majority of such NAT pairs detected by GeneChips are formed by a transcript of an established gene and either an EST or an mRNA. In order to determine the exact antisense regulatory mechanism indicated by the correlation of sense probes with antisense probes, a further investigation is necessary for every particular case of interest. However, the analysis of microarray data has proved to be a good method to reconfirm known NATs, discover new ones, as well as to notice possible problems in the annotation of antisense transcripts

    The Gauss Law: A Tale

    Full text link
    The Gauss law plays a basic role in gauge theories, enforcing gauge invariance and creating edge states and superselection sectors. This article surveys these aspects of the Gauss law in QED, QCD and nonlinear G/HG/H models. It is argued that nonabelian superselection rules are spontaneously broken. That is the case with SU(3)SU(3) of colour which is spontaneously broken to U(1)Ă—U(1)U(1)\times U(1). Nonlinear G/HG/H models are reformulated as gauge theories and the existence of edge states and superselection sectors in these models is also established.Comment: Published version. References adde

    Uncovering the expression patterns of chimeric transcripts using surveys of affymetrix GeneChips.

    Get PDF
    BACKGROUND: A chimeric transcript is a single RNA sequence which results from the transcription of two adjacent genes. Recent studies estimate that at least 4% of tandem human gene pairs may form chimeric transcripts. Affymetrix GeneChip data are used to study the expression patterns of tens of thousands of genes and the probe sequences used in these microarrays can potentially map to exotic RNA sequences such as chimeras. RESULTS: We have studied human chimeras and investigated their expression patterns using large surveys of Affymetrix microarray data obtained from the Gene Expression Omnibus. We show that for six probe sets, a unique probe mapping to a transcript produced by one of the adjacent genes can be used to identify the expression patterns of readthrough transcripts. Furthermore, unique probes mapping to an intergenic exon present only in the MASK-BP3 chimera can be used directly to study the expression levels of this transcript. CONCLUSIONS: We have attempted to implement a new method for identifying tandem chimerism. In this analysis unambiguous probes are needed to measure run-off transcription and probes that map to intergenic exons are particularly valuable for identifying the expression of chimeras

    Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network

    Get PDF
    Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods

    Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network

    Get PDF
    Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods

    Micro-geographic risk factors for malarial infection.

    Get PDF
    BACKGROUND: Knowledge of geography is integral to the study of insect-borne infectious disease such as malaria. This study was designed to evaluate whether geographic parameters are associated with malarial infection in the East Sepik province of Papua New Guinea (PNG), a remote area where malaria is a major cause of morbidity and mortality. METHODS: A global positioning system (GPS) unit was used at each village to collect elevation, latitude and longitude data. Concurrently, a sketch map of each village was generated and the villages were sub-divided into regions of roughly equal populations. Blood samples were taken from subjects in each region using filter paper collection. The samples were later processed using nested PCR for qualitative determination of malarial infection. The area was mapped using the GPS-information and overlaid with prevalence data. Data tables were examined using traditional chi square statistical techniques. A logistic regression analysis was then used to determine the significance of geographic risk factors including, elevation, distance from administrative centre and village of residence. RESULTS: Three hundred and thirty-two samples were included (24% of the total estimated population). Ninety-six were positive, yielding a prevalence of 29%. Chi square testing within each village found a non-random distribution of cases across sub-regions (p < 0.05). Multivariate logistic regression techniques suggested malarial infection changed with elevation (OR = 0.64 per 10 m, p < 0.05) and distance from administrative centre (OR = 1.3 per 100 m, p < 0.05). CONCLUSION: These results suggest that malarial infection is significantly and independently associated with lower elevation and greater distance from administrative centre in a rural area in PNG. This type of analysis can provide information that may be used to target specific areas in developing countries for malaria prevention and treatment

    First-principles calculation of the elastic dipole tensor of a point defect: Application to hydrogen in α-zirconium

    Get PDF
    The elastic dipole tensor is a fundamental quantity relating the elastic field and atomic structure of a point defect. We review three methods in the literature to calculate the dipole tensor and apply them to hydrogen in α -zirconium using density functional theory (DFT). The results are compared with the dipole tensor deduced from earlier experimental measurements of the λ tensor for hydrogen in α -zirconium. There are significant errors with all three methods. We show that calculation of the λ tensor, in combination with experimentally measured elastic constants and lattice parameters, yields dipole tensor components that differ from experimental values by only 10%–20%. There is evidence to suggest that current state-of-the-art DFT calculations underestimate bonding between hydrogen and α -zirconium

    Numerical and experimental assessment of the modal curvature method for damage detection in plate structures

    Get PDF
    This paper is concerned with the use of numerically obtained modal curvatures for damage detection in both isotropic and composite laminated plates. Numerical simulations are carried out by using COMSOL Multiphysics as FEM solver of the governing equations, in which a Mindlin-Reissner plate model is assumed and defects are introduced as localized smoothed variations of the baseline (healthy) configuration. Experiments are also performed on steel and aluminum plates using scanning laser vibrometry. This study confirms that the central difference method greatly amplifies the measurement errors and its application leads to ineffective predictions for damage detection, even after denoising. As a consequence, different numerical techniques should be explored to allow the use of numerically obtained modal curvatures for structural health monitoring. Herein, the Savitzky-Golay filter (or least-square smoothing filter) is considered for the numerical differentiation of noisy data

    Unusual Thermodynamics on the Fuzzy 2-Sphere

    Full text link
    Higher spin Dirac operators on both the continuum sphere(S2S^2) and its fuzzy analog(SF2S^2_F) come paired with anticommuting chirality operators. A consequence of this is seen in the fermion-like spectrum of these operators which is especially true even for the case of integer-spin Dirac operators. Motivated by this feature of the spectrum of a spin 1 Dirac operator on SF2S_F^2, we assume the spin 1 particles obey Fermi-Dirac statistics. This choice is inspite of the lack of a well defined spin-statistics relation on a compact surface such as S2S^2. The specific heats are computed in the cases of the spin 12\frac{1}{2} and spin 1 Dirac operators. Remarkably the specific heat for a system of spin 12\frac{1}{2} particles is more than that of the spin 1 case, though the number of degrees of freedom is more in the case of spin 1 particles. The reason for this is inferred through a study of the spectrums of the Dirac operators in both the cases. The zero modes of the spin 1 Dirac operator is studied as a function of the cut-off angular momentum LL and is found to follow a simple power law. This number is such that the number of states with positive energy for the spin 1 and spin 12\frac{1}{2} system become comparable. Remarks are made about the spectrums of higher spin Dirac operators as well through a study of their zero-modes and the variation of their spectrum with degeneracy. The mean energy as a function of temperature is studied in both the spin 12\frac{1}{2} and spin 1 cases. They are found to deviate from the standard ideal gas law in 2+1 dimensions.Comment: 19 pages, 7 figures. The paper has been significantly modified. Main results are unchange
    • …
    corecore