119 research outputs found

    Vivianite formation in methane-rich deep-sea sediments from the South China Sea

    Get PDF
    Phosphorus is often invoked as the ultimate limiting nutrient, modulating primary productivity on geological timescales. Consequently, along with nitrogen, phosphorus bioavailability exerts a fundamental control on organic carbon production, linking all the biogeochemical cycles across the Earth system. Unlike nitrogen that can be microbially fixed from an essentially infinite atmospheric reservoir, phosphorus availability is dictated by the interplay between its sources and sinks. While authigenic apatite formation has received considerable attention as the dominant sedimentary phosphorus sink, the quantitative importance of reduced iron-phosphate minerals, such as vivianite, has only recently been acknowledged, and their importance remains underexplored. Combining microscopic and spectroscopic analyses of handpicked mineral aggregates with sediment geochemical profiles, we characterize the distribution and mineralogy of iron-phosphate minerals present in methane-rich sediments recovered from the northern South China Sea. Here, we demonstrate that vivianite authigenesis is pervasive in the iron-oxide-rich sediments below the sulfate–methane transition zone (SMTZ). We hypothesize that the downward migration of the SMTZ concentrated vivianite formation below the current SMTZ. Our observations support recent findings from non-steady-state post-glacial sedimentary successions, suggesting that iron reduction below the SMTZ, probably driven by iron-mediated anaerobic oxidation of methane (Fe-AOM), is coupled to phosphorus cycling on a much greater spatial scale than previously assumed. Calculations reveal that vivianite acts as an important burial phase for both iron and phosphorus below the SMTZ, sequestering approximately half of the total reactive iron pool. By extension, sedimentary vivianite formation could serve as a mineralogical marker of Fe-AOM, signalling low-sulfate availability against methanogenic and ferruginous backdrop. Given that similar conditions were likely present throughout vast swathes of Earth's history, it is possible that Fe-AOM and vivianite authigenesis may have modulated methane and phosphorus availability on the early Earth, as well as during later periods of expanded marine oxygen deficiency. A better understanding of vivianite authigenesis, therefore, is fundamental to test long-standing hypotheses linking climate, atmospheric chemistry and the evolution of the biosphere.</p

    Assessing Sedimentary Boundary Layer Calcium Carbonate Precipitation and Dissolution Using the Calcium Isotopic Composition of Pore Fluids

    Get PDF
    We present pore fluid geochemistry, including major ion and trace metal concentrations and the isotopic composition of pore fluid calcium and sulfate, from the uppermost meter of sediments from the Gulf of Aqaba (Northeast Red Sea) and the Iberian Margin (North Atlantic Ocean). In both the locations, we observe strong correlations among calcium, magnesium, strontium, and sulfate concentrations as well as the sulfur isotopic composition of sulfate and alkalinity, suggestive of active changes in the redox state and pH that should lead to carbonate mineral precipitation and dissolution. The calcium isotope composition of pore fluid calcium (δ44Ca) is, however, relatively invariant in our measured profiles, suggesting that carbonate mineral precipitation is not occurring within the boundary layer at these sites. We explore several reasons why the pore fluid δ44Ca might not be changing in the studied profiles, despite changes in other major ions and their isotopic composition, including mixing between the surface and deep precipitation of carbonate minerals below the boundary layer, the possibility that active iron and manganese cycling inhibits carbonate mineral precipitation, and that mineral precipitation may be slow enough to preclude calcium isotope fractionation during carbonate mineral precipitation. Our results suggest that active carbonate dissolution and precipitation, particularly in the diffusive boundary layer, may elicit a more complex response in the pore fluid δ44Ca than previously thought

    Modelling the Effects of Non-Steady State Transport Dynamics on the Sulfur and Oxygen Isotope Composition of Sulfate in Sedimentary Pore Fluids

    Get PDF
    We present the results of an isotope-enabled reactive transport model of a sediment column undergoing active microbial sulfate reduction to explore the response of the sulfur and oxygen isotopic composition of sulfate under perturbations to steady state. In particular, we test how perturbations to steady state influence the cross plot of δ34S and δ18O for sulfate. The slope of the apparent linear phase (SALP) in the cross plot of δ34S and δ18O for sulfate has been used to infer the mechanism, or metabolic rate, of microbial metabolism, making it important that we understand how transient changes might influence this slope. Tested perturbations include changes in boundary conditions and changes in the rate of microbial sulfate reduction in the sediment. Our results suggest that perturbations to steady state influence the pore fluid concentration of sulfate and the δ34S and δ18O of sulfate but have a minimal effect on SALP. Furthermore, we demonstrate that a constant advective flux in the sediment column has no measurable effect on SALP. We conclude that changes in the SALP after a perturbation are not analytically resolvable after the first 5% of the total equilibration time. This suggests that in sedimentary environments the SALP can be interpreted in terms of microbial metabolism and not in terms of environmental parameters

    Creek Dynamics Determine Pond Subsurface Geochemical Heterogeneity in East Anglian (UK) Salt Marshes

    Get PDF
    Salt marshes are complex systems comprising ephemerally flooded, vegetated platforms hydraulically fed by tidal creeks. Where drainage is poor, formation of saline-water ponds can occur. Within East Anglian (UK) salt marshes, two types of sediment chemistries can be found beneath these ponds; iron-rich sediment, which is characterized by high ferrous iron concentration in subsurface porewaters (up to 2 mM in the upper 30 cm); and sulfide-rich sediment, which is characterized by high porewater sulfide concentrations (up to 8 mM). We present 5 years of push-core sampling to explore the geochemistry of the porewater in these two types of sediment. We suggest that when organic carbon is present in quantities sufficient to exhaust the oxygen and iron content within pond sediments, conditions favor the presence of sulfide-rich sediments. In contrast, in pond sediments where oxygen is present, primarily through bioirrigation, reduced iron can be reoxidised and thus recycled for further reduction, favoring the perpetuation of iron-rich sedimentary conditions. We find these pond sediments can alter significantly over an annual timescale. We carried out a drone survey, with ground-truthed measurements, to explore the spatial distribution of geochemistry in these ponds. Our results suggest that a pond’s proximity to a creek partially determines the pond subsurface geochemistry, with iron-rich ponds tending to be closer to large creeks than sulfide-rich ponds. We suggest differences in surface delivery of organic carbon, due to differences in the energy of the ebb flow, or the surface/subsurface delivery of iron may control the distribution. This could be amplified if tidal inundations flush ponds closer to creeks more frequently, removing carbon and flushing with oxygen. These results suggest that anthropogenic creation of drainage ditches could shift the distribution of iron- and sulfide-rich ponds and thus have an impact on nutrient, trace metal and carbon cycling in salt marsh ecosystems.This work was funded partially by an ERC starting investigator grant (CARBONSINK – 307582) to AVT as well as NERC RG94667 to AVT. Funding for AH was provided by a NERC DTP grant (LBAG/199.02.RG91292)

    Early diagenesis of iron and sulfur in Bornholm Basin sediments: the role of near-surface pyrite formation

    Get PDF
    Pyrite formation in marine sedimentary environments plays a key role in the global biogeochemical cycles of carbon, sulfur and iron, regulating Earth’s surface redox balance over geological time scales. The sulfur isotopic composition of pyrite is one of the major geochemical tools for investigating early diagenetic processes in modern marine sediments and substantive changes to the Earth’s surface environment in ancient sedimentary rocks. We studied sulfur–iron diagenesis and the sulfur isotopic evolution in sediments of the Bornholm Basin, southwestern Baltic Sea, to track the formation of pyrite in the near-surface sediments. Pyrite accumulation is observed with depth over the uppermost 100 cm before the extent of pyritization of the highly reactive iron pool (Fepy/FeHR) stays constant at ca. 0.9, suggesting that the use of a single iron-speciation parameter as a proxy for anoxic and sulfidic conditions needs to be supported by other independent indicators in sedimentary records. Stable sulfur isotopic analysis demonstrates that the bulk pools of elemental sulfur and iron monosulfide do not exchange isotopes completely with aqueous sulfide. We suggest that the reactions with polysulfide and aqueous sulfide are probably restricted to the surface of the solid-phase sulfur and iron-sulfur aggregates. Although pyrite is growing throughout the uppermost sediment column, the pyrite at depth has a sulfur isotopic composition similar to that of pyrite that formed near the sediment surface. To understand the isotopic discrepancy between pyrite and aqueous sulfide in the deeper sediments, we developed a simple diagenetic model, which reproduces the observed sulfur isotopic composition of pyrite well. Our results suggest that much of the pyrite is rapidly formed near the sediment–water interface, and its δ34S is not as influenced by the 34S-enriched pool of aqueous sulfide in the deeper part of the sediment, allowing 32S-enriched pyrite to be preserved in deeper sediments. This near-surface diagenesis and the associated isotopic pattern are possibly of relevance for many marine sediments with high organic matter content, and high aqueous sulfide but low reactive iron availability. Moreover, our sulfur isotopic data demonstrate that extremely slow pyritization is ongoing in the deep lacustrine clay sediments. These results have implications for the interpretation of sulfur–iron geochemical data in both modern and ancient settings as well as for improving reconstructions of ancient depositional environments and a better understanding of the marine sulfur cycle throughout Earth’s history
    • …
    corecore