23,128 research outputs found

    Lattices of hydrodynamically interacting flapping swimmers

    Full text link
    Fish schools and bird flocks exhibit complex collective dynamics whose self-organization principles are largely unknown. The influence of hydrodynamics on such collectives has been relatively unexplored theoretically, in part due to the difficulty in modeling the temporally long-lived hydrodynamic interactions between many dynamic bodies. We address this through a novel discrete-time dynamical system (iterated map) that describes the hydrodynamic interactions between flapping swimmers arranged in one- and two-dimensional lattice formations. Our 1D results exhibit good agreement with previously published experimental data, in particular predicting the bistability of schooling states and new instabilities that can be probed in experimental settings. For 2D lattices, we determine the formations for which swimmers optimally benefit from hydrodynamic interactions. We thus obtain the following hierarchy: while a side-by-side single-row "phalanx" formation offers a small improvement over a solitary swimmer, 1D in-line and 2D rectangular lattice formations exhibit substantial improvements, with the 2D diamond lattice offering the largest hydrodynamic benefit. Generally, our self-consistent modeling framework may be broadly applicable to active systems in which the collective dynamics is primarily driven by a fluid-mediated memory

    Roll Resonance for a Gravity-gradient Satellite

    Get PDF
    Roll and attitude stability for gravity gradient satellite

    Optimal Power Cost Management Using Stored Energy in Data Centers

    Get PDF
    Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically using these devices to reduce the time average electric utility bill in a data center. Using the technique of Lyapunov optimization, we develop an online control algorithm that can optimally exploit these devices to minimize the time average cost. This algorithm operates without any knowledge of the statistics of the workload or electricity cost processes, making it attractive in the presence of workload and pricing uncertainties. An interesting feature of our algorithm is that its deviation from optimality reduces as the storage capacity is increased. Our work opens up a new area in data center power management.Comment: Full version of Sigmetrics 2011 pape

    Temperature Dependent Raman Studies and Thermal Conductivity of Few Layer MoS2

    Full text link
    We report on the temperature dependence of in-plane E2g and out of plane A1g Raman modes in high quality few layers MoS2 (FLMS) prepared using a high temperature vapor-phase method. The materials obtained were investigated using transmission electron microscopy. The frequencies of these two phonon modes were found to vary linearly with temperature. The first order temperature coefficients for E2g and A1g modes were found to be 1.32*10-2 and 1.23*10-2 cm-1/K, respectively. The thermal conductivity of the suspended FLMS at room temperature was estimated to be about 52 W/mK
    corecore