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ABSTRACT

Previous studies of gravity-gradient satellite attitude stabili-
zation showed that large roll angles could occur for a partially
shadowed orbit. The cause was determined to be a resonance effect
due to solar radiation pressure. Here an expression for the solar
torque for roll on a dumbbell-shaped satellite is presented. The
amplitude of the torque is shown to be a function of the angle
between the satellite-sun line and the normal to the orbit plane.

For circular orbits, an expression is derived to determine for what
position of the sun relative to the orbit plane the resonance effect
is a maximum. For orbits of modest eccentricity, the amount of orbit
shadowed as a function of sun-orbit orientation is determined. The

rersistence of the resonance effect for retrograde orbits is discussed.

-iii-



ke

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

SILVER SPRING. MARYLAND

Abstract

List of Illustrations
INTRODUCTION
ANALYSIS
References .

Acknowledgment

TABLE OF CONTENTS

PRECEDIN
CEDING PAGE prank NOT FiLmep

iii

vii

11

13



PRECEDING PAGE BLANK NOT FILMED.
' APPLIED PHYSICS LABORATORY
' LIST OF ILLUSTRATIONS
' Figure Page
' 1 Solar Torque for Roll During One Nodal
' Period . . . . . . 3

2 Twice Orbital Roll Forcing Function for a

' Partially Shadowed Orbit . . . 6
l 3 Shadowing for an Eccentric Orbit . . 8
' 4 Time Variation of the Resonance Effect . . 9
' - vii -



g
s

¢ wp—
A
&

o o

.,..,
’ 3
 Po—

L

Eo
L ‘ ! L4

————

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

SILVER SFRING. MARYLAND

ABSTRACT

Previous studies of gravity-gradient satellite attitude stabili-
zation showed that large roll angles could occur for a partially
shadowed orbit. The cause was determined to be a resonance effect
due to solar radiation pressure. Here an expression for the solar
torque for roll on a dumbbell-shaped satellite is presented. The
amplitude of the torque 1s shown to be a function of the angle
between the satellite-sun line and the normal to the orbit plane.

For circular orbits, an expression is derived to determine for what
position of the sun relative to the orbit plane the resonance effect
is a maximum. For orbits of modest eccentricity, the amount of orbit
shadowed as a function of sun-orbit orientation is determined. The
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Introduction

Pre- and post-launch studies of the geodetic satellite (GEOS-A),
launched in November 1966, indicated that large roll angles could occur
when the orbit was partially shadowed [1]. An examination of the solar
radiation pressure forcing function for roll showed that it had a com-
ponent with twice orbital frequency. Since the natural frequency of roll
for a gravity-gradient satellite is also twice orbital, the occurrence of
resonance is clear. Furthermore, the amplitude of the roll librations was
shown to be a function of {1 , the angle between the projection of the
earth-sun line onto the equatorial plane and the line of nodes. The
purpose of this note is to derive an expression for the value of QQ

which maximizes the twice orbital component of the roll forcing function.

Analxsis

The solar forcing function ¢ in roll for a satellite whose geometry

is similar to that of a dumbbell is given by [1] as

¢ = @ sin i sin O (1)
where 1 is the orbital inclination and the satellite is in the sunlit part
of the orbit with the earth-sun line lying in the equatorial plane. @O

is a function of the solar flux and physical properties of the satellite

as well as a weak function of the satellite's attitude. For small librational

-1-
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angles, it may be considered constant. If the sun is allowed to have a

declination, 6s , then the forcing function is
9 = o cos T (2)

where 1 is interpreted to be the angle between the earth-sun line and

the normal to the orbit plane. Using an equatorial coordinate system and

zero right ascension of the sun, its direction cosines are (cos és’ 0, sin GS).
The direction cosines of the normal to the orbit plane are then given by

(sin i sin Q, -sin 1 cos Q, cos i) so that

cos | = [sin 1 sin Q cos 68 + cos i sin és]. (3)

;
P, cos ll satellite in sunlight
¢ = ()

0 satellite in shadow

\

as shown in Figure 1.

The amplitude of the second harmonic when equation (L) is expanded by

a Fourier series is

CPO
o(20) = - [cos 1 sin B(M)] (5)

where B is the amount of orbit shadowed in radians and 6 1is the argument

of satellite latitude.

Analysis of equation (5) with reference to equation (3) indicates that

If the orbit is partially shadowed then I
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SOLAR TORQUE FOR ROLL DURING ONE NODAL PERIOD

Fig. 1
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the variasble in (5) is Q for any given satellite, orbit, and epoch. It
is to be noted that since B is a function of 1 , it also is a function of
Qy as will be shown.

For circular orbits Patterson [2] gives a formula for the time that a

satellite spends in the sun. This expression,which neglects penumbra effects,

is used to obtain

=1 F
B = m- 2 sin |——§§H—ﬁ~——| (6)

where

(1 - l/a2)1/2

L3 |
|

and a is the semi-major axis in units of earth radii.

Sustituting the above into (5) yields

P
p(28) = —2= [cos N —ZE—— (sa®n - F)Y/2) (7)
sin ™M

Since we are interested in maximizing (7), we set dep/dQ = O and using

equation (3) obtain, after some algebra,

-1 1 - -1/2 o
QJMax = sin = GSL(2a - 1) - cos i sin 6s] (8)

sin i ¢
Roll
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The above equation provides the nodal angle that will give the largest
roll libration with twice orbital frequency. As an example, consider a
satellite which has a = 1.2, i = 74° and 6, = 0. The variation of the
"twice orbital roll" amplitude for a partially shadowed orbit is shown
in Figure 2.

For an eccentric orbit, Escobal [3] gives the shadow equation as a quartic
in the true anomaly which cannot in general be solved analytically. Here
expressions are derived to reflect the first-order effects of eccentricity,
¢. For the case §_ =0 (this simplifies the algebra without imposing
constraints on the applicability% the arguments of latitude, eI and 9

o J
at which the satellite enters and exits from the earth's shadow satisfy

cos B cos Q- cos 1sin 8 sin Q = -(1 - l/r2)1/2 where (9)

1

r 1is the magnitude of the radius vector to the satellite,and for perigee

at ep =m is given by
r = a(l-¢°)/ (1-¢cosa), (10)

Expanding the right-hand side of (9) and retaining only terms of first order

in eccentricity yield

(1 - 1/102)1/2 -+ L cose (11)
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where F has been defined previously. Substituting (11) into (9) and

solving for B (=6, - BI), we obtain

0

B = sin”t [—212?— (8% - Fg)l/g] (12)
A

where
€

F a

(cos Q +

g
1l

5 )2 + (cos 1 sin 0)2 .
Using this expression in (5), the amplitude of the second harmonic becomes
®
0 2F 2 2\1/2
o(20) =  ——[cos 1= (& - A2, (13)
A

Although (13) is similar to (7), setting de/dQ = O no longer yields a
closed-form solution. However, any of several numerical techniques are
applicable. Figure 3 shows B = B(Q) using both (6) and (12) and compares
them with P obtained by numerically solving Escobal's equation.

The selection of the correct orbital parameters becomes particularly
significant when we consider a retrograde orbit. In such an orbit the
sense of nodal precession PQ and the precession of the sun (which is
about 0.985 degrees/day) is the same. Furthermore, P, = (i,a,e) (4],
and i,a,e could be so selected that the magnitude of nodal precession
becomes equal to that of the sun. If indeed this happens and the orbit is
partially shadowed the condition of roll resonance can persist near its
maximum value for long periods (Figure 4). We note, however, that for
prograde orbits the precessional sense of {0 1is opposite to that of the
the sun,and roll resonance will not persist for long periods since the

fraction of shadowed orbit is itself going to vary.
-7-
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