14,326 research outputs found

    Quantum anti-Zeno effect without rotating wave approximation

    Get PDF
    In this paper, we systematically study the spontaneous decay phenomenon of a two-level system under the influences of both its environment and continuous measurements. In order to clarify some well-established conclusions about the quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not use the rotating wave approximation (RWA) in obtaining an effective Hamiltonian. We examine various spectral distributions by making use of our present approach in comparison with other approaches. It is found that with respect to a bare excited state even without the RWA, the QAZE can still happen for some cases, e.g., the interacting spectra of hydrogen. But for a physical excited state, which is a renormalized dressed state of the atomic state, the QAZE disappears and only the QZE remains. These discoveries inevitably show a transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure

    The effect of ruhrstahl and hereaeus (RH) operation on the mixing of molten steel

    Get PDF
    The flow and mixing characteristics of molten steel in the RH refining process were studied. A hydraulic simulation system with the geometric similarity ratio of 1:4 was built with 210 tons of RH as the prototype. The influence of different locations of tracers and different operation processes on the mixing of molten steel in ladle was studied. The results show that the RH operation should adopt a large air blowing amount, the insertion depth of the impregnated tube should not be less than 560 mm, and the liquid level of the vacuum chamber should be kept small

    Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery

    Get PDF
    Recombinant adeno-associated virus (rAAV) is an attractive tool for basic science and translational medicine including gene therapy, due to the versatility in its cell and organ transduction. Previous work indicates that rAAV transduction patterns are highly dependent on route of administration. Based on this relationship, we hypothesized that intraperitoneal (IP) administration of rAAV produces unique patterns of tissue tropism. To test this hypothesis, we investigated the transduction efficiency of 12 rAAV serotypes carrying an enhanced green fluorescent protein (EGFP) reporter gene in a panel of 12 organs after IP injection. Our data suggest that IP administration emphasizes transduction patterns that are different from previously reported intravascular delivery methods. Using this approach, rAAV efficiently transduces the liver, pancreas, skeletal muscle, heart and diaphragm without causing significant histopathological changes. Of note, rAAVrh.10 showed excellent muscle transduction following IP administration, highlighting its potential as a new muscle-targeting vector

    Effect of ion species on the accumulation of ion-beam damage in GaN

    Get PDF
    Wurtzite GaN epilayers bombarded with a wide range of ion species (10 keV H-1, 40 keV C-12, 50 keV O-16, 600 keV Si-28, 130 keV Cu-63, 200 keV Ag-107, 300 keV Au-197, and 500 keV Bi-209) are studied by a combination of Rutherford backscattering/channeling (RBS/C) spectrometry and cross-sectional transmission electron microscopy. Results show that strong dynamic annealing processes lead to a complex dependence of the damage-buildup behavior in GaN on ion species. For room-temperature bombardment with different ion species, bulk disorder, as measured by RBS/C, saturates at some level that is below the random level, and amorphization proceeds layer-by-layer from the GaN surface with increasing ion dose. The saturation level of bulk disorder depends on implant conditions and is much higher for light-ion bombardment than for the heavy-ion irradiation regime. In the case of light ions, when ion doses needed to observe significant lattice disorder in GaN are large (greater than or similar to 10(16) cm(-2)), chemical effects of implanted species dominate. Such implanted atoms appear to stabilize an amorphous phase in GaN and/or to act as effective traps for ion-beam-generated mobile point defects and enhance damage buildup. In particular, the presence of a large conce ntration of carbon in GaN strongly enhances the accumulation of implantation-produced disorder. For heavier ions, where chemical effects of implanted species seem to be negligible, an increase in the density of collision cascades strongly increases the level of implantation-produced lattice disorder in the bulk as well as the rate of layer-by-layer amorphization proceeding from the surface. Such an increase in stable damage and the rate of planar amorphization is attributed to (i) an increase in the defect clustering efficiency with increasing density of ion-beam-generated defects and/or (ii) a superlinear dependence of ion-beam-generated defects, which survive cascade quenching, on the density of collision cascades. Physical mechanisms responsible for such a superlinear dependence of ion-beam-generated defects on collision cascade density are considered. Mechanisms of surface and bulk amorphization in GaN are also discussed

    Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma.

    Get PDF
    Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy

    Development of Novel Therapeutics Targeting the Blood–Brain Barrier: From Barrier to Carrier

    Full text link
    The blood–brain barrier (BBB) is a highly specialized neurovascular unit, initially described as an intact barrier to prevent toxins, pathogens, and potentially harmful substances from entering the brain. An intact BBB is also critical for the maintenance of normal neuronal function. In cerebral vascular diseases and neurological disorders, the BBB can be disrupted, contributing to disease progression. While restoration of BBB integrity serves as a robust biomarker of better clinical outcomes, the restrictive nature of the intact BBB presents a major hurdle for delivery of therapeutics into the brain. Recent studies show that the BBB is actively engaged in crosstalk between neuronal and the circulatory systems, which defines another important role of the BBB: as an interfacing conduit that mediates communication between two sides of the BBB. This role has been subject to extensive investigation for brain-targeted drug delivery and shows promising results. The dual roles of the BBB make it a unique target for drug development. Here, recent developments and novel strategies to target the BBB for therapeutic purposes are reviewed, from both barrier and carrier perspectives

    Generalized Holstein model for spin-dependent electron transfer reaction

    Full text link
    Some chemical reactions are described by electron transfer (ET) processes. The underlying mechanism could be modeled as a polaron motion in the molecular crystal-the Holstein model. By taking spin degrees of freedom into consideration, we generalize the Holstein model (molecular crystal model) to microscopically describe an ET chemical reaction. In our model, the electron spins in the radical pair simultaneously interact with a magnetic field and their nuclear-spin environments. By virtue of the perturbation approach, we obtain the chemical reaction rates for different initial states. It is discovered that the chemical reaction rate of the triplet state demonstrates its dependence on the direction of the magnetic field while the counterpart of the singlet state does not. This difference is attributed to the explicit dependence of the triplet state on the direction when the axis is rotated. Our model may provide a possible candidate for the microscopic origin of avian compass.Comment: 9 pages, 6 figure
    • …
    corecore