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Determining population stratification and subgroup  
effects in association studies of rare genetic variants  
for nicotine dependence
Ai-Ru Hsieha, Li-Shiun Chenb, Ying-Ju Lic and Cathy S.J. Fannc  

Background  Rare variants (minor allele frequency < 1% 
or 5 %) can help researchers to deal with the confounding 
issue of ‘missing heritability’ and have a proven role in 
dissecting the etiology for human diseases and complex 
traits.

Methods  We extended the combined multivariate 
and collapsing (CMC) and weighted sum statistic (WSS) 
methods and accounted for the effects of population 
stratification and subgroup effects using stratified 
analyses by the principal component analysis, named here 
as ‘str-CMC’ and ‘str-WSS’. To evaluate the validity of the 
extended methods, we analyzed the Genetic Architecture 
of Smoking and Smoking Cessation database, which 
includes African Americans and European Americans 
genotyped on Illumina Human Omni2.5, and we compared 
the results with those obtained with the sequence kernel 
association test (SKAT) and its modification, SKAT-O that 
included population stratification and subgroup effect 
as covariates. We utilized the Cochran–Mantel–Haenszel 
test to check for possible differences in single nucleotide 
polymorphism allele frequency between subgroups  
within a gene. We aimed to detect rare variants and 
considered population stratification and subgroup 

effects in the genomic region containing 39 acetylcholine 
receptor-related genes.

Results  The Cochran–Mantel–Haenszel test as  
applied to GABRG2 (P = 0.001) was significant. However, 
GABRG2 was detected both by str-CMC (P = 8.04E-06) 
and str-WSS (P = 0.046) in African Americans but not by 
SKAT or SKAT-O.

Conclusions  Our results imply that if associated 
rare variants are only specific to a subgroup, a stratified 
analysis might be a better approach than a combined 
analysis. Psychiatr Genet 29:111–119 Copyright © 2019 
The Author(s). Published by Wolters Kluwer Health, Inc.
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Background
Cigarette smoking is a primary risk factor for many chronic 
diseases (Bergen and Caporaso, 1999) including many 
cancers, diabetes, cardiovascular disease, and chronic lung 
disease (Fang et al.`, 2014). Recent candidate-gene asso-
ciation studies (Fang et al., 2014) and genome-wide asso-
ciation studies (GWASs) (Thorgeirsson et al., 2010), many 
of which have been reviewed by Wang and Li (2010), 
have searched for and, at varying levels of significance, 
identified common variants associated with measures 
of response to tobacco, tobacco consumption, nicotine 
dependence, nicotine metabolism, and smoking cessation.

Current smoking prevalence is similar in European 
Americans and African Americans (Centers for Disease 
and Prevention, 2008; Saccone et al., 2010; Choi et al., 
2017). Nicotine dependence is common in both groups, 
with evidence of slightly lower levels of dependence in 
African Americans by standard measures such as ciga-
rettes per day currently in use (Breslau et al., 2001; Saccone  
et al., 2010). Smoking cessation rates, however, are lower 
in African Americans compared with European Americans 
(Breslau et al., 2001; Covey et al., 2008; Saccone et al., 2010; 
Choi et al., 2017). Furthermore, there is evidence that 
African Americans have a higher risk of dependence at 
lower cigarettes-per-day levels compared with European 
Americans (Luo et al., 2008; Saccone et al., 2010). Also 
important are the disparities in health consequences from 
smoking: African Americans have higher lung cancer inci-
dence and mortality than European Americans (Haiman 
et al., 2006; Jemal et al., 2008; Saccone et al., 2010). An 
understanding of the genetic loci involved, and their 
effects and allele frequencies in diverse populations, can 
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provide important clues to the risk of developing nicotine 
dependence across all populations. Multiple nicotinic 
receptor subunit genes outside of chromosome 15q25 
are likely to be important in the biological processes and 
development of nicotine dependence, and some of these 
risks may be shared across diverse populations (Saccone 
et al., 2010).

GWASs constitute an important means for identifying 
risk genes for complex human diseases, such as diabetes 
(Hindorff et al., 2009; Dajani et al., 2017), heart disease 
(Hofker et al., 2014; Erdmann et al., 2018), and Alzheimer’s 
disease (Shen and Jia, 2016; Chung et al., 2018), among 
others. Despite many successes in identifying risk alleles, 
most associated variants discovered through GWAS do not 
account for the majority of heritability estimated for these 
complex human diseases and traits. From a genetics per-
spective, by far the most studied of these complex human 
diseases and traits can be attributed to heritability about 
an estimated 60–80% of human disease (Lichtenstein  
et al., 2009), whereas GWAS have identified only 5–10% 
of this heritability, leading many researchers to ponder 
which alleles underlie the missing heritability (Manolio 
et al., 2009; Zuk et al., 2014; Auer and Lettre, 2015). One 
of the approaches to deal with missing heritability is to 
detect new DNA variants, especially rare variants that 
have a relatively large impact on disease etiology, that is, 
those with minor allele frequency <5%, which may also 
contribute to complex disease (Schork et al., 2009; Marian, 
2012; Gusev et al., 2013; Zuk et al., 2014; Auer and Lettre, 
2015; Ma et al., 2015; Nicolae, 2016). With efforts from the 
1000 Genomes Project, which sought to identify most rare 
genetic variants in a group of 1092 multiethnic individu-
als, a new generation of GWAS is being designed to ena-
ble the discovery of rare variants using next-generation 
sequencing data (Abecasis et al., 2012; Sampson  
et al., 2012). Hence, improved technologies for discover-
ing rare variants provide a possible means of explaining 
the missing heritability.

A number of methods have been developed for identi-
fying associations between rare variants and common 
diseases (Li and Leal, 2008; Madsen and Browning, 
2009; Schork et al., 2009). Madsen and Browning (2009) 
proposed a weighted sum statistic (WSS) method that 
assigns weights to variants according to their frequency 
in controls such that the variants with lower frequencies 
have greater weights. Li and Leal (2008) proposed the 
combined multivariate and collapsing (CMC) method for 
case-control data. Wu et al. (2011) proposed a sequence ker-
nel association test (SKAT), that is, a variance-component 
method that aggregates individual variant-score test sta-
tistics. However, population structure and subgroups 
can be strong confounding factors in association studies 
(Pritchard et al., 2000; Ziv and Burchard, 2003; Clayton 
et al., 2005; Roeder and Luca, 2009), and thus account-
ing for population structure and subgroups is crucial 
even when seemingly homogeneous ethnic populations 

are sampled. To our knowledge, only a few articles have 
discussed rare-variant detection and considered popula-
tion stratification and subgroup effects [e.g., reviewed by 
Moore et al. (2013), O’Connor et al. (2013), Wang et al.  
(2015), Prokopenko et al. (2016)] for nicotine depend-
ence and smoking cessation studies (Saccone et al., 2010). 
However, whether population stratification would be bet-
ter than dealt with using stratified analyses or including 
population simply as a covariate has not been studied 
enough (Culverhouse et al., 2011).

To achieve this goal, we evaluated the issue by considering 
two situations: (1) assessing the strata in separate analyses 
and (2) pooling data from all strata, using population as a 
covariate. The results from the two situations were then 
compared. We utilized the Cochran–Mantel–Haenszel 
(CMH) test to check whether the allelic distribution of sin-
gle nucleotide polymorphisms (SNPs) is similar between 
the population stratifications/subgroups. Furthermore, we 
extended WSS and CMC to identify rare variants while 
also considering population stratification and subgroup 
effects using stratified analyses by principal component 
analysis (PCA), named here as ‘str-CMC’ and ‘str-WSS’. 
To compare results obtained with the two aforementioned 
situations for nicotine dependence and smoking cessa-
tion studies, we analyzed a smoking cessation dataset to 
test for rare variants associated with nicotine dependence 
which was downloaded from the Database of Genotypes 
and Phenotypes (accession number phs000404.v1.p1). 
The smoking cessation dataset was from the Collaborative 
Genetic Study of Nicotine Dependence (COGEND; 
principal investigator: Laura Bierut) and the University of 
Wisconsin Transdisciplinary Tobacco Use Research Center 
(UW-TTURC; principal investigator: Timothy Baker). 
Evidence has recently accumulated that SNPs in the 
genetic region encoding the nicotinic acetylcholine recep-
tor (nAChR) subunits α6, α5, α3, and β4 are associated with 
smoking and nicotine dependence (Russo et al., 2011). For 
the smoking cessation dataset analyses, we were only inter-
ested in the acetylcholine receptor region that has been 
reported previously.

To evaluate the issue by considering two situations, 
we compared the results to those obtained with two 
variance-component methods, namely, SKAT (Wu et al.,  
2011) and optimal sequencing kernel association test  
(SKAT-O) (Lee et al., 2012), which treat both population 
stratification and subgroup effects in the PCA as covar-
iates. In our results, we found ethnicity (i.e., African 
American and European American) was associated 
with the first axis of variation (PC1) arising from PCA 
(Supplementary Additional file 2, Supplemental digi-
tal content 2, http://links.lww.com/PG/A221). Our results 
imply that if a gene showed allele frequency differences 
between the two groups, it would be better to use str-
CMC or str-WSS in detecting associated rare variants. 
By contrast, if a gene has a similar distribution of allele 
frequency between the two groups, this would be better 
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dealt with by including population stratification and sub-
group effects as covariates in SKAT or SKAT-O. These 
results will assist researchers in identifying a biological 
basis for the etiology of nicotine dependence.

Materials and methods
The CMC and WSS cannot be adjusted for covariates. 
However, the SKAT and SKAT-O are able to adjust for 
covariates (Liang and Xiong, 2013). We evaluated rare var-
iant methods for dealing with population subgroups: (1) 
CMC and WSS were analyzed population subgroups in 
population stratification analyses, that is, str-MSS and str-
WSS and (2) SKAT and SKAT-O were combined data from 
all population subgroups, using population subgroups as 
a covariate. First, we calculated the first axis of variation 
(PC1) using the EIGENSTRAT software (Price et al., 
2006) to consider population stratification and subgroup 
effects. PCA is a linear dimensionality reduction tech-
nique used to infer continuous axes of genetic variation. 
Price et al. (2006) developed the program EIGENSTRAT 
to correct for population structure in association tests. 
It uses the top eigenvectors of the sample covariance 
matrix as covariates in a regression setting. Second, we 
performed the CMH test (Mantel and Haenszel, 1959) 
to assess differences in SNP allele frequencies between 
subgroups by the results of the PC1 arising from PCA. 
The CMH test was two-tailed for all analyses. To inves-
tigate the homogeneity association assumption, we used 
the Breslow–Day test and found no significant evidence 
for heterogeneity association. Third, we detected rare var-
iants and accounted for the effects of population stratifi-
cation and subgroup effects. Rare genetic variants, here 
defined as alleles with a frequency less than 1–5% (Wu  
et al., 2011). For all rare variant methods, rare variants 
were detected within a gene, a minor allele frequency of 
less than 5% was used as the rare-variant criterion.

Smoking cessation data
Our analyses were based on a publicly available smok-
ing cessation dataset from the Database of Genotypes 
and Phenotypes (http://www.ncbi.nlm.nih.gov/sites/
entrez?db=gap) (accession number phs000404.v1.p1). 
Genotyping during the GWAS discovery phase used the 
HumanOmni2.5 BeadChip designed to analyze 2 443 179 
loci. All individuals (n = 1515) in the study were from two 
projects: COGEND (principal investigator: Laura Bierut) 
and UW-TTURC (principal investigator: Timothy 
Baker). The individuals reported smoking at least 10 
cigarettes per day. Both International Classification of 
Diseases 10th Revision (ICD-10) (Janca et al., 1993) and 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV) have separate categories for dependent and 
nondependent smokers. The ICD-10 and the DSM-IV 
are unsatisfactory and are rarely used for daily clinical 
care because they cannot be tailored treatments to indi-
vidual needs (Helzer et al., 2006; Rüther et al., 2014). 
However, the Fagerström Test for Nicotine Dependence 

(FTND) measures tobacco dependencies as dimension 
parameters and uses continuums to indicate the sever-
ity of the dependency. Thus, the FTND has become 
an internationally recognized and proven method for 
determining tobacco dependence (Heatherton et al., 
1991; Rüther et al., 2014). For this reason, we binned 
cases and controls based on the FTND when evaluating  
smoking cessation.

Both COGEND and UW-TTURC projects assessed nic-
otine dependence using the FTND (Heatherton et al., 
1991). The FTND is a six-item self-report measure of 
nicotine dependence. FTND scores on the scale range 
from 0 to 10 and also categorized accordingly: 2 = very 
low dependence; 3–4 = low dependence; 5 = moderate 
dependence; 6–7 = high dependence; and 8+ = very high 
dependence (López-Torrecillas et al., 2017). For the cur-
rent study, cases were defined as having a nicotine depend-
ence if the score for this test was at least 6; all controls had 
a score of or less 4. To avoid potential rare variant detec-
tion biases associated with misclassification of FTND 
scores due to FTND breakpoints (López-Torrecillas  
et al., 2017), our study ignored participants with an FTND 
score of 5 and analyzed two groups of participants with 
large differences in FTND score. According to this defi-
nition, there were 923 cases (135 African Americans and 
788 European Americans) and 592 controls (69 African 
Americans and 523 European Americans).

For this dataset, we were only interested in the acetyl-
choline receptor region that has been reported previously 
as being candidate genes of smoking cessation (Conti  
et al., 2008). According to Conti et al. (2008), several stud-
ies have identified associations of genetic regions encod-
ing the nAChRs with nicotine dependence (Saccone 
et al., 2007) and with smoking cessation (Berrettini  
et al., 2007). Therefore, the nAChRs list was analyzed 
by Ingenuity Pathways Analysis was performed (IPA; 
Ingenuity H Systems, Redwood City, CA, USA; (http://
www.ingenuity.com) to explore the possibility of identi-
fying gene candidates previously reported in the litera-
ture findings from Ingenuity Knowledge Base. All possibility 
of identifying gene candidates searched from IPA were 
listed in Supplementary Additional file 1, Supplemental 
digital content 1, http://links.lww.com/PG/A220.

Combined multivariate and collapsing with population 
stratification and subgroup effects (str-CMC)
CMC (Li and Leal, 2008) aggregates multiple rare variants 
across a genomic region (e.g., gene, haplotype, and path-
way) and analyzes them together. CMC divides markers 
into subgroups based on predefined criteria (e.g., allele 
frequency) and, within each group, marker data are col-
lapsed into an indicator variable. The procedure we used 
consisted of the following four steps: (1) data were divided 
into subgroups by the first axis of variation (PC1) using 
EIGENSTRAT software (Price et al., 2006); (2) markers 
in each gene group were classified as either rare variants 
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or common variants; (3) markers in each gene group are 
divided into subgroups on the basis of predefined criteria 
(e.g., allele frequencies), and within each group, marker 
data are collapsed into indicator variables defined for the 
genotype at the ith variant site for the jth individual in 
the case population ( X ji ) and control population (Yji ),  

respectively: X ji =





1

0

  Genotype is AA

  Genotype is Aa

-1 Genotype is aa 






=,Yji

1

0

  Genotype is AA

  Genotype is Aa

-1 Genotyppe is aa 










as described in Li et al., 2008 (Li and Leal, 2008); and (4) 
Hotelling’s T2 test was used to compare the groups of 
marker data in each k-gene group. This procedure was 
named as ‘str-CMC’.

Weighted sum statistic with population stratification 
and subgroup effects (str-WSS)
Madsen and Browning (2009) described WSS, which 
determines a weighted rare-variant count in a genomic 
region (e.g., gene, haplotype, and pathway). The weights 
are determined according to the variance of the allele 
frequency estimated for cases and controls, with down-
weight mutation counts in constructing the genetic score 
as bellow. The procedure we use consisted of the fol-
lowing five steps: (1) data were divided into subgroups 
by the PC1 using EIGENSTRAT software (Harvard 
University, USA; https://www.hsph.harvard.edu/alkes-
price/software/) (Price et al., 2006); (2) a set of markers 
were divided into k genomic regions; (3) the genetic 
score as described in Madsen and Browning (2009) was 
calculated for each gene. Madsen and Browning (2009) 

defined the genetic score as follows: S
I

wj
ij

ii

L

=
=

∑ �
1

where Iij  is the number of mutations (usually this will 
be the minor allele, unless common allele was reported 
susceptibility to disease) in variant i for individual j in a 
genomic region, L is the number of variants genotyped, 
and i = 1, 2,…, L. The weight, �

w n q qi i i i= ⋅ −( )1 , is the 
estimated SD of the total number of mutations in the 
sample (including cases and controls), under the null 
hypothesis of no frequency differences between cases 

and controls, where q
m

ni
i
U

i
U

=
+
+

1

2 2
, mi

U  is the number of 

mutant alleles observed for variant i in the controls, ni
U  

is the number of controls genotyped for variant i, and ni  
is the total number of individuals genotyped for variant 
i (cases and controls); (4) genetic scores were ranked for 
the cases and controls combined; and (5) a Wilcoxon rank 
sum test was used to test for association between the set 
of rare variants and disease status via permutation tests. 
This procedure was named ‘str-WSS’.

Sequence kernel association test-based methods
SKAT (Wu et al., 2011) and SKAT-O (Lee et al., 2012) use 
a multiple regression model to directly correlate a pheno-
type with genetic variants in a genomic region (e.g., gene, 
haplotype, and pathway) and with covariates by the PC1 
using EIGENSTRAT software (Price et al., 2006).

Results
A total of 2  295  169 SNPs in chromosomes 1–22 were 
excluded according to the following quality-control cri-
teria: genotype call rate < 0.95, or departure from Hardy–
Weinberg equilibrium (P  <  10–4) for the control group. 
Missing SNPs were imputed using Beagle: Univer
sity of Washington, USA; https://faculty.washington. 
edu/browning/beagle/beagle.html. Beagle produces a 
measure r2 to estimate the squared correlation between 
imputed and true alleles for the marker. For quality con-
trol (QC) purpose, we excluded SNPs with r2 less than 
0.3. Finally, we used 1785 SNPs in acetylcholine receptor 
region that has been reported previously as being candi-
date genes of smoking cessation (Conti et al., 2008)

str-CMC
After using EIGENSTRAT software (Price et al., 2006), 
we found that ethnicity was the first axis of variation 
(PC1) arising from PCA. Hence, we divided the data into 
two subgroups, that is, groups European Americans and 
African Americans.

The acetylcholine receptor genes CHRNA5 (choliner-
gic receptor, nicotinic, alpha 5) (P = 0.038) and PSMA4 
(proteasome subunit alpha 4) (P  =  0.019) of group 
European Americans were identified by str-CMC (Fig. 1; 
Supplementary Additional file 1, Supplemental digital 
content 1, http://links.lww.com/PG/A221). CHRNA5 is asso-
ciated with risk of failure for individuals who attempt to 
reduce cigarette smoking (Chen et al., 2014) and contrib-
utes to lung cancer susceptibility in smoking-associated 
nasopharyngeal carcinoma (Ji et al., 2014). PSMA4 is asso-
ciated with lung cancer risk in Caucasians and African 
Americans (Hansen et al., 2010).

The following genes of group African Americans were 
identified by str-CMC (Fig. 1; Supplementary Additional 
file 1, Supplemental digital content 1, http://links.lww.
com/PG/A221): GABRB2 (gamma-aminobutyric acid A 
receptor, beta 2) (P  =  2.20E-05), GABRG2 (gamma-am-
inobutyric acid A receptor, gamma 2) (P  =  8.04E-06), 
JAK2 (Janus kinase 2) (p=6.58E-07), DRD2 (dopamine 
receptor D2) (P  =  2.92E-04), RAPSN (receptor-asso-
ciated protein of the synapse) (P = 0.031), RIC3 (RIC3 
acetylcholine receptor chaperone) (P  =  0.005), CHRM5 
(cholinergic receptor, muscarinic 5) (P = 0.03), CHRNA7 
(cholinergic receptor, nicotinic, alpha 7) (P  =  5.49E-
06), CHRNE (cholinergic receptor, nicotinic, epsilon) 
(P  =  0.0176), CDH2 (cadherin 2, type 1, N-cadherin) 
P  <  0.00000001), and APP [amyloid beta (A4) precur-
sor protein] (P  <  0.00000001). GABRB2 is associated 
with susceptibility to drug addiction (Hondebrink et al., 
2013), psychiatric disorders (Zhao et al., 2012), and non-
small cell lung cancer (Zhang et al., 2013). GABRG2 is 
also associated with epilepsy (Reinthaler et al., 2015) and 
may contribute to the potential for suicidal behavior in 
schizophrenia patients with alcohol dependence or abuse 
(Zai et al., 2014). PTK2B is associated with nonsmall 
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cell lung cancer (Kuang et al., 2013). Mutations in JAK2, 
when considered in the context of cigarette smoking sta-
tus, can affect breast cancer–specific mortality (Slattery 
et al., 2014). Although Choi et al. (2015) did not find a 
significant relationship between DRD2 polymorphisms 
and success during smoking cessation therapy, DRD2 was 
found to be associated with nicotine and alcohol addiction 
(Ma et al., 2015). RIC3 is associated with nicotinic recep-
tor assembly, expression, and nicotine-induced receptor 
upregulation (Dau et al., 2013). CHRM5 may be involved 
in addiction to tobacco and cannabis, but not alcohol, in 
group European Americans (Anney et al., 2007). CHRNA7 
may be involved in the development of physical depend-
ence on nicotine (Kishioka et al., 2014).

str-WSS
The following genes of group European Americans were 
found by str-WSS (Fig. 1; Supplementary Additional file 
1, Supplemental digital content 1, http://links.lww.com/PG/
A221): CHRNA2 (P = 0.038), JAK2 (P = 0.013), CHRNA3 
(P = 0.011), CHRNA5 (P = 0.002), and PSMA4 (P = 0.004). 

CHRNA2 is associated with nicotine dependence in 
groups European Americans and African Americans 
(Wang et al., 2014) and with smoking cessation (Heitjan 
et al., 2008). CHRNA3 is associated with nicotine depend-
ence (Munafò et al., 2011), and CHRNA3 polymorphisms 
are genetic modifiers of the risk for developing lung ade-
nocarcinoma (He et al., 2014). However, CHRNA3 may 
not merely operate as a marker for the difficulty, willing-
ness, or motivation to quit smoking (Munafò et al., 2011).

The following genes were identified by str-WSS in group 
African Americans (Fig.  1; Supplementary Additional 
file 1, Supplemental digital content 1, http://links.lww.
com/PG/A221): GABRG2 (P = 0.046), RAPSN (P = 0.011), 
CHRNA5 (P = 0.039), CHRNA7 (P = 0.016), and CHRNB1 
(P  =  0.046), whereas CHRNB1 is associated with the 
African Americans sample, no significant association was 
found in group European Americans (Lou et al., 2006).

Sequence kernel association test and SKAT-O
We also observed an African American to European 
American difference that was the result of the first axis of 

Fig. 1

(a) The Venn diagram of rare variants detected by str-CMC in European Americans (str-CMC_European Americans), African Americans (str-CMC_
African Americans) and CMC. A color scheme of gene symbol is used to display CMH results with blue for significance, black for no significance. 
(b) The Venn diagram of rare variants detected by str-WSS in European Americans (str-CMC_European Americans), African Americans  
(str-WSS_African Americans) and WSS. (c) The Venn diagram of rare variants detected by SKAT and SKAT-O. CMC, combined multivariate and 
collapsing; WSS, weighted sum statistic.
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variation (PC1) arising from PCA using EIGENSTRAT 
software (Price et al., 2006). Hence, we used a subgroup 
effect as a covariate in SKAT and SKAT-O.

The following genes were detected by SKAT: CHRNA1 
(P  =  0.001, Fig.  1; Supplementary Additional file 1, 
Supplemental digital content 1, http://links.lww.com/
PG/A221), UBQLN1 (P  =  0.025, Fig.  1; Supplementary 
Additional file 1, Supplemental digital content 1, http://
links.lww.com/PG/A221), and CHRM1 (P  =  0.041, Fig.  1; 
Supplementary Additional file 1, Supplemental digital 
content 1, http://links.lww.com/PG/A221). CHRNA1 is asso-
ciated with smoking cessation (Rose et al., 2010) and lung 
adenocarcinoma (Chang et al., 2013). UBQLN1 is associ-
ated with smoking cessation (Rose et al., 2010) and nons-
mall cell lung cancer (Shah et al., 2015).

The following genes were detected by SKAT-O: CHRNA1 
(P = 0.015), CHRND (P = 0.034), UBQLN1 (P = 0.034), 
CHRM1 (P = 0.013), CHRNA3 (P = 0.018), and CHRNA5 
(P = 0.048). CHRND has been reported to be related to 
modify the risk for nicotine dependence associated with 
peer smoking (Johnson et al., 2010).

Comparison of the rare variant–associated results from 
str-CMC, str-WSS, sequence kernel association test, 
and SKAT-O
We applied CMH analysis to the 39 acetylcholine recep-
tor-related genes, which revealed that 15 of these genes 
had differences in SNP allele frequencies between 
subgroups after controlling for different groups arising 
from PCA using EIGENSTRAT software (Price et  al., 
2006) (i.e., European Americans and African Americans) 
(Fig.  1; Supplementary Additional file 1, Supplemental 
digital content 1, http://links.lww.com/PG/A221). Among 
these 15 genes (with different SNP allele frequencies), 
str-CMC found 10 genes (two in European Americans 
and eight in African Americans) and str-WSS detected 
six genes (four in European Americans, one in African 
Americans; one in both European Americans and African 
Americans). However, SKAT and SKAT-O detected 
only 1 genes (Fig.  1; Supplementary Additional file 1, 
Supplemental digital content 1, http://links.lww.com/PG/
A221). By contrast, we found 22 genes that did not dif-
fer with respect to SNP allele frequency between sub-
groups after controlling for different groups arising from 
PCA using EIGENSTRAT software. Of these 22 genes, 
str-CMC detected three genes (0 in European Americans 
and three in African Americans) and str-WSS detected 
two genes (0 in European Americans and two in African 
Americans). SKAT and SKAT-O also detected five genes 
(Fig.  1; Supplementary Additional file 1, Supplemental 
digital content 1, http://links.lww.com/PG/A221).

For investigating differences between population stratifi-
cation and combined analyses (a within test comparison), 
among these 15 genes (with different SNP allele fre-
quencies) in population stratification analyses, str-CMC 

found 10 genes (two in European Americans and eight 
in African Americans). By contrast, in combined anal-
yses, CMC only found two of them. However, str-WSS 
(detected six genes) and WSS (detected five genes) had 
comparable performance in these 15 genes.

The results indicated that for this dataset, two subgroups, 
that is, group European Americans and African Americans 
as a covariate was not an effective substitute for analyzing 
subgroups separately when only one of them contained 
an associated rare variant.

Discussion
We determined whether population stratification and 
subgroup effects would be better dealt with using strati-
fied analyses or including population as a covariate. Upon 
comparing results from str-CMC, str-WSS, SKAT, and 
SKAT-O, we found that the inclusion of samples from 
other subgroups often introduced noise when the signal 
for a particular gene was strong in one of the subgroups. 
Without stratification analysis using CMC, in the CMH 
test, for example, the result for GABRG2 was significant 
at P = 0.0009. However, with stratification analysis using 
str-CMC, the P value for GABRG2 was P = 0.00000804 
(Fig.  1; Supplementary Additional file 1, Supplemental 
digital content 1, http://links.lww.com/PG/A221) and it 
was P = 0.046 for str-WSS in African Americans. On the 
other hand, GABRG2 was not significant by using SKAT 
(P  =  0.40426) and SKAT-O (P  =  0.60138). In addition, 
GABRG2, GABRB2, CHRNA2, JAK2, RIC3, AGPHD1, 
PSMA4, CHRNA5, CHRNA3, CHRNB4, CHRM5, 
CHRNE, CDH2, and APP were significant in subsamples 
representing more than half of the data, and dealing with 
the strata in separate analyses increased the chances for 
detecting associated rare variants.

Despite the allele frequencies not being different accord-
ing to CMH test, CHRNA1 was not significant using 
CMC and WSS. However, by using SKAT and SKAT-O, 
the P value is borderline significant (P  =  0.01, Fig.  1; 
Supplementary Additional file 1, Supplemental digital 
content 1, http://links.lww.com/PG/A221).

By using these data, our results demonstrated that all 
rare-variant association methods considered here could 
yield a relatively high rate of spurious associations in the 
presence of fine-scale population structure. In addition, 
we showed that considering for the effects of population 
stratification and subgroup effects can confound rare var-
iant analyses. The differences in disease risk between 
subgroups that generated such high spurious association 
rates are plausible and it is important for further interpret-
ing rare-variant association results. For instance, there is 
a 2.5–10% difference in the prevalence of lung cancer 
among different populations of European men, although 
there is a less striking difference for women (Boyle and 
Ferlay, 2005). In our study, GABRG2 was detected by str-
CMC (P  =  8.04E-06, Fig.  1; Supplementary Additional 
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file 1, Supplemental digital content 1, http://links.lww.com/
PG/A221) and str-WSS (P = 0.046, Fig. 1; Supplementary 
Additional file 1, Supplemental digital content 1, 
http://links.lww.com/PG/A221) in African Americans. By 
using SKAT and SKAT-O, the P values for GABRG2 
are 0.404 and 0.601, respectively (Supplementary 
Additional file 1, Supplemental digital content 1,  
http://links.lww.com/PG/A220). GABRG2 was not detected 
by the two tests if stratification was not considered. 
GABRG2 was also associated with addiction (Klee  
et al., 2012) and alcohol use disorder (Li et al., 2014; Zai 
et al., 2014). In our study, GABRG2 might affect nicotine 
dependence risk in African Americans.

Gene-based methods for detecting rare variants are as 
effective as the SNP-based methods for GWAS (Schaid 
et al., 2005; Wessel and Schork, 2006; Tzeng and Zhang, 
2007). The grouping of multiple SNPs within a genomic 
region allows combined calculations to enhance statisti-
cal power, because rare variants include extremely sparse 
data so that traditional SNP-set methods for common var-
iants might not be applicable to rare-variant detection. 
Some well-known rare-variant detection methods can 
potentially be used to combine low-frequency SNPs in 
GWAS. However, the number of SNPs in a gene might 
be important in the rare variant detection methods. For 
genes with larger numbers of markers, such as acetyl-
choline receptor-related genes, CMC and str-CMC were 
more likely to detect the effects compared with other 
methods, that is, WSS, str-WSS, SKAT, and SKAT-O. For 
example, in our study, we identified 262 SNPs in APP 
and 180 in CDH2 by str-CMC in group African Americans 
(Supplementary Additional file 1, Supplemental digital 
content 1, http://links.lww.com/PG/A220).

Population structure and subgroups can be strong con-
founding factors in association studies (Pritchard et al., 
2000; Ziv and Burchard 2003; Clayton et al., 2005; Roeder 
and Luca, 2009), so their effects need to be taken into 
account. To tackle this problem, we used EIGENSTRAT 
software (Price et al., 2006) that can remove some of their 
effects. However, the number of principal components 
used should depend on the distribution of the eigenval-
ues (Jiang and Dong, 2011) and sample sizes of subgroups.

Rare variant-detection methods can divide into two main 
categories: burden and variance-component tests (Bansal 
et al., 2010) such that they should complement each other 
for the purpose of identifying possible risk factors for 
nicotine dependence or other complex traits. Nicotine 
usage is associated with 5 million deaths per year world-
wide and is considered one of the gateway drugs that lead 
to the use of illicit drugs. Before detecting rare variants, 
the CMH test can be used to determine whether there 
are any possible differences in SNP allele frequencies 
between subgroups within a gene/genomic region/haplo-
type/pathway. If in a gene differences in SNP allele fre-
quencies between subgroups occur, stratification analyses 

such as str-CMC or str-WSS should be used in detecting 
rare variants. Hence, CMH should first be used in rare 
variant detection analysis. By contrast, when SNP allele 
frequencies between subgroups are similar all methods 
can be used directly.

In our study, we cannot fully determine whether the 
results demonstrate the differences between population 
stratification versus combined analyses, or whether they 
reflect the differences between the statistical approaches. 
Because the population stratification/combined analyses 
and statistical approaches are fundamentally different, 
these methods should be considered complementary to 
each other when studying rare variants in various disease 
analyses. In our study, the small sample size for the African 
Americans population is a limitation, particularly when 
addressing a question involving low-frequency variants. It 
is difficult to interpret how much of the results are driven 
by the small numbers in the African Americans group. In 
future studies, we will adopt a pairwise sampling design 
based on Imai et al. (2015) to increase sample sizes.

In conclusion, we have extended the CMC and WSS 
methods to identify rare variants and stratify by popula-
tion/subgroups while analyzing smoking cessation data. 
We found that including population as a covariate was 
not an effective substitute for analyzing the subpopula-
tions separately when only one subpopulation contained 
a rare variant linked to the phenotype. The conclusion is 
the same as previous study findings (Culverhouse et al., 
2011). Our results will help researchers overcome popu-
lation stratification and subgroup effects when detecting 
rare variants. More importantly, these analyses showed 
that even when an identical genetic model is applied to 
multiple subgroups, sample size is not the only factor that 
determines association results. If rare causative variants are 
unique to a subgroup, stratified analyses might be more 
powerful than combined analyses although stratified anal-
yses may entail a considerable decrease in the sample size.
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