38 research outputs found

    Captured by Evil: The Idea of Corruption in Law

    Get PDF
    Corruption is one of the most powerful words in the English language. When it comes to the treatment of corruption by law, however, corruption is a troubled concept. With increasing recognition of the costs of corruption for economic development, democratic governance, international aid programs, and other world goals, attempts to articulate what this destructive force is have led to an avalanche of theoretical writing. In the last fifteen years, corruption has been variously defined as the violation of law, a public servant\u27s breach of public duty, an agent\u27s betrayal of a principal\u27s interests, the pursuit of secrecy, the denial of equality in political influence, and other ways. In the end, however, all of these efforts fall short. Corruption is more than law-breaking: it is more than breaching public duties. To say that A is a thief or that A has breached his duty is not to say that A is corrupt. The latter is far more powerful, far more emotional, far more essential than the others. It is more than secrecy, or the denial of equal opportunity. It is a searing indictment, somehow, not only of A\u27s act but of A\u27s character. It is a statement not only of what A has done, but of what A has become. Corruption is, I argue, a far more powerful idea than these existing legal understandings have articulated: it is the idea of capture by evil, the possession of the individual by evil, in law. Just as we once believed in corruption of the blood in American law, which decreed that offspring of those who had committed crimes were believed to be irrevocably tainted by their parents\u27 depravity, so we still retain - through the idea of corruption - the belief that individual evil extends beyond acts of wrongdoing, or the denial of equal opportunity, or breach of the public trust. It is this idea of corruption, I argue - the idea of capture by evil - that, although unarticulated, drives our understandings of corruption in law. It drives our understanding of corrupt judges, who, once corrupt, we believe will act so in every case. It drives our understanding of campaign finance reform, where we fear deep corruption of the process from the occurrence of corrupt acts. It drives our understanding of corruption as a systemic effect and systemic influence, which presents institutional dangers that are greater than other crimes, and that requires purgation rather than simple law enforcement. This Article explores this deeper understanding of corruption, its impacts in areas such as judicial corruption and campaign finance reform, and its implications for the principle of the rule of law

    Macrophage Replication Screen Identifies a Novel Francisella Hydroperoxide Resistance Protein Involved in Virulence

    Get PDF
    Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Laboratory-based high pressure X-ray photoelectron spectroscopy: a novel & flexible reaction cell approach

    Get PDF
    The last 10-15 years has witnessed a resurgence in the application of high pressure X-ray photoelectron spectroscopy (HPXPS), mainly through the development of new electron energy analyser designs, and the utilization of high-brilliance synchrotron radiation sources. To continue this expansion of the technique it is crucial that instruments are developed for the home-laboratory, considering that this is where the vast majority of traditional ultra-high vacuum (UHV) X-ray photoelectron spectroscopy is performed. The research presented here introduces a new addition to the field, an instrument capable of performing spectroscopy measurements from UHV through to high pressure (25 mbar), achieved using a retractable and modular reaction cell design. The ease of use, stability (of analyser, X-ray source and gas delivery etc.), as well as overall capability of the instrument will be demonstrated

    Phase and molecular orientation in metal-free phthalocyanine films on conducting glass: Characterization of two deposition methods

    No full text
    in this study, metal-free phthalocyanine has been deposited on a conducting glass surface by two methods: by spreading the molecular powder directly on the substrate in air and by vapor sublimation under ultra-high vacuum conditions (evaporation). The films have been characterized by means of core level X-ray Photoemission Spectroscopy, X-ray Absorption Spectroscopy (XAS) and Ultra Violet and Visible absorption spectroscopy (UV-Vis). Our results show that the two deposition methods produce molecular overlayers in different polymorphic phases; the UV-Vis measurements indicate that the film obtained by powder deposition is of x-phase type whereas sublimation leads to an a-polymorph structure. The XAS results show that in the powder deposited film the molecules are mainly oriented parallel to the surface. This is opposite to the case of the vapor deposited film, where the molecules mainly are oriented orthogonal to the surface

    Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2(110) I: XAS and STM

    No full text
    X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM) have been used to study the absorption of monolayers of the pyridinecarboxylic acid monomers (isonicotinic acid, nicotinic acid, and picolinic acid) and benzoic acid on a rutile TiO2(1 1 0) surface. We find that the pyridine and phenyl rings are oriented with their planes largely perpendicular to the surface. The azimuthal orientations are strongly influenced by adsorbate-adsorbate interactions, which in each case leads to at least two different molecular species. In order to reach this conclusion a detailed strategy has been developed for the interpretation of angle-dependent XAS data, which does not rely on any curve fitting procedures. (C) 2003 Elsevier B.V. All rights reserved

    The electronic structure of iron phthalocyanine probed by photoelectron and x-ray absorption spectroscopies and density functional theory calculations

    No full text
    A joint experimental and theoretical work to explain the electronic and geometrical structure of an in situ prepared film of iron phthalocyanine (FePc) on silicon (100) is presented. FePc molecular films have been characterized by core and valence photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS), and the results have been interpreted and simulated by density functional theory (DFT) calculations. C1s and N1s PE spectra have been analyzed by taking into account all chemically nonequivalent C and N atoms in the molecule. In the Fe2p(3/2) spectra it has been possible to resolve two components that can be related to the open shell structure of the molecule. By valence PES and N1s XAS data, the geometrical orientation of the FePc molecules in the film could be determined. Our results indicate that for the FePc on Si(100), the molecules within the film are mainly standing on the surface. The experimental N1s XAS spectra are very well reproduced by the theoretical calculations, which are both angle and atomic resolved, giving a detailed description of the electronic and geometric structure of the FePc film. Furthermore, the asymmetry and the intensity angle variation of the first N1s XAS threshold feature could be explained by the presented DFT calculations as due to the chemical nonequivalence of the N atoms and the symmetry character of the lowest unoccupied molecular orbital

    Electronic structure of a vapor-deposited metal-free phthalocyanine thin film

    No full text
    The electronic structure of a vapor-sublimated thin film of metal-free phthalocyanine (H2Pc) is studied experimentally and theoretically. An atom-specific picture of the occupied and unoccupied electronic states is obtained using x-ray-absorption spectroscopy (XAS), core- and valence-level x-ray photoelectron spectroscopy (XPS), and density-functional theory (DFT) calculations. The DFT calculations allow for an identification of the contributions from individual nitrogen atoms to the experimental N1s XAS and valence XPS spectra. This comprehensive study of metal-free phthalocyanine is relevant for the application of such molecules in molecular electronics and provides a solid foundation for identifying modifications in the electronic structure induced by various substituent groups
    corecore