343 research outputs found

    Two dimensional wave problems in rotating elastic media

    Full text link

    Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids

    Full text link
    We use the shear transformation zone (STZ) theory of dynamic plasticity to study the necking instability in a two-dimensional strip of amorphous solid. Our Eulerian description of large-scale deformation allows us to follow the instability far into the nonlinear regime. We find a strong rate dependence; the higher the applied strain rate, the further the strip extends before the onset of instability. The material hardens outside the necking region, but the description of plastic flow within the neck is distinctly different from that of conventional time-independent theories of plasticity.Comment: 4 pages, 3 figures (eps), revtex4, added references, changed and added content, resubmitted to PR

    A hysteretic multiscale formulation for validating computational models of heterogeneous structures

    Get PDF
    A framework for the development of accurate yet computationally efficient numerical models is proposed in this work, within the context of computational model validation. The accelerated computation achieved herein relies on the implementation of a recently derived multiscale finite element formulation, able to alternate between scales of different complexity. In such a scheme, the micro-scale is modelled using a hysteretic finite elements formulation. In the micro-level, nonlinearity is captured via a set of additional hysteretic degrees of freedom compactly described by an appropriate hysteric law, which gravely simplifies the dynamic analysis task. The computational efficiency of the scheme is rooted in the interaction between the micro- and a macro-mesh level, defined through suitable interpolation fields that map the finer mesh displacement field to the coarser mesh displacement field. Furthermore, damage related phenomena that are manifested at the micro-level are accounted for, using a set of additional evolution equations corresponding to the stiffness degradation and strength deterioration of the underlying material. The developed modelling approach is utilized for the purpose of model validation; firstly, in the context of reliability analysis; and secondly, within an inverse problem formulation where the identification of constitutive parameters via availability of acceleration response data is sought

    Bun splitting: a practical cutting stock problem

    Get PDF
    We describe a new hierarchical 2D-guillotine Cutting Stock Problem. In contrast to the classic cutting stock problem, waste is not an issue. The problem relates to the removal of a defective part and assembly of the remaining parts into homogeneous size blocks. The context is the packing stages of cake manufacturing. The company's primary objective is to minimise total processing time at the subsequent, packing stage. This objective reduces to one of minimising the number of parts produced when cutting the tray load of buns. We offer a closed form optimization approach to this class of problems for certain cases, without recourse to mathematical programming or heuristics. The methodology is demonstrated through a case study in which the number of parts is reduced by almost a fifth, and the manufacturer's subsidiary requirement to reduce isolated single bun parts and hence customer complaints is also satisfied

    Spring and Asymptotic Boundary Condition Models for Study of Scattering by Thin Cylindrical Interphases

    Get PDF
    Specially designed fiber-matrix interphases are created in modern composites to improve fracture toughness, chemical compatibility and matching of thermal expansion coefficients between composite constituents [1, 2, 3]. Since the interphase transfers the load from matrix to fiber, the interphase elastic moduli, thickness and the quality of bonding with the surrounding fiber and matrix are essential in determining composite mechanical performance. Such interphase conditions can be sensed by ultrasonic waves due to strong interphase effects on wave scattering from fibers. However the interphase properties (elastic modulus and thickness) are in-situ parameters and are often difficult to define. One way to get around this is to introduce simplified boundary condition (B.C.) models to describe the displacement and stress fields across the interphase directly. In this paper we will address this problem with emphasis on spring and asymptotic B.C. models as a representation of a thin fiber-matrix interphase when studying wave scattering from fibers

    Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites.

    Get PDF
    This study introduces a unit cell (UC) based finite element (FE) micromechanical model that accounts for correct post cure fabric geometry, in-situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber reinforced phenolic (GFRP) composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography (XMT) tests. Moreover, it utilizes an analytical expression to up-date the input material properties to account for in-situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for FE micromechanics models of 8-harness satin weave composites. The UC method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.DFID UK through DELPHE 78

    Computational Implementation of a Thermodynamically Based Work Potential Model For Progressive Microdamage and Transverse Cracking in Fiber-Reinforced Laminates

    Get PDF
    A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment

    Lifestyle physical activity among urban Palestinians and Israelis: a cross-sectional comparison in the Palestinian-Israeli Jerusalem risk factor study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urban Palestinians have a high incidence of coronary heart disease, and alarming prevalences of obesity (particularly among women) and diabetes. An active lifestyle can help prevent these conditions. Little is known about the physical activity (PA) behavior of Palestinians. This study aimed to determine the prevalence of insufficient PA and its socio-demographic correlates among urban Palestinians in comparison with Israelis.</p> <p>Methods</p> <p>An age-sex stratified random sample of Palestinians and Israelis aged 25-74 years living in east and west Jerusalem was drawn from the Israel National Population Registry: 970 Palestinians and 712 Israelis participated. PA in a typical week was assessed by the Multi-Ethnic Study of Atherosclerosis (MESA) questionnaire. Energy expenditure (EE), calculated in metabolic equivalents (METs), was compared between groups for moderate to vigorous-intensity physical activity (MVPA), using the Wilcoxon rank-sum test, and for domain-specific prevalence rates of meeting public health guidelines and all-domain insufficient PA. Correlates of insufficient PA were assessed by multivariable logistic modeling.</p> <p>Results</p> <p>Palestinian men had the highest median of MVPA (4740 METs-min<sub>*</sub>wk<sup>-1</sup>) compared to Israeli men (2,205 METs-min<sub>*</sub>wk<sup>-1 </sup><it>p </it>< 0.0001), or to Palestinian and Israeli women, who had similar medians (2776 METs-min<sub>*</sub>wk<sup>-1</sup>). Two thirds (65%) of the total MVPA reported by Palestinian women were derived from domestic chores compared to 36% in Israeli women and 25% among Palestinian and Israeli men. A high proportion (63%) of Palestinian men met the PA recommendations by occupation/domestic activity, compared to 39% of Palestinian women and 37% of the Israelis. No leisure time PA was reported by 42% and 39% of Palestinian and Israeli men (<it>p </it>= 0.337) and 53% and 28% of Palestinian and Israeli women (<it>p </it>< 0.0001). Palestinian women reported the lowest level of walking. Considering all domains, 26% of Palestinian women were classified as insufficiently active versus 13% of Palestinian men (<it>p </it>< 0.0001) who did not differ from the Israeli sample (14%). Middle-aged and elderly and less educated Palestinian women, and unemployed and pensioned Palestinian men were at particularly high risk of inactivity. Socio-economic indicators only partially explained the ethnic disparity.</p> <p>Conclusions</p> <p>Substantial proportions of Palestinian women, and subgroups of Palestinian men, are insufficiently active. Culturally appropriate intervention strategies are warranted, particularly for this vulnerable population.</p
    • …
    corecore