116 research outputs found

    Musings on privacy issues in health research involving disaggregate geographic data about individuals

    Get PDF
    This paper offers a state-of-the-art overview of the intertwined privacy, confidentiality, and security issues that are commonly encountered in health research involving disaggregate geographic data about individuals. Key definitions are provided, along with some examples of actual and potential security and confidentiality breaches and related incidents that captured mainstream media and public interest in recent months and years. The paper then goes on to present a brief survey of the research literature on location privacy/confidentiality concerns and on privacy-preserving solutions in conventional health research and beyond, touching on the emerging privacy issues associated with online consumer geoinformatics and location-based services. The 'missing ring' (in many treatments of the topic) of data security is also discussed. Personal information and privacy legislations in two countries, Canada and the UK, are covered, as well as some examples of recent research projects and events about the subject. Select highlights from a June 2009 URISA (Urban and Regional Information Systems Association) workshop entitled 'Protecting Privacy and Confidentiality of Geographic Data in Health Research' are then presented. The paper concludes by briefly charting the complexity of the domain and the many challenges associated with it, and proposing a novel, 'one stop shop' case-based reasoning framework to streamline the provision of clear and individualised guidance for the design and approval of new research projects (involving geographical identifiers about individuals), including crisp recommendations on which specific privacy-preserving solutions and approaches would be suitable in each case

    Variationally Mimetic Operator Networks

    Full text link
    In recent years operator networks have emerged as promising deep learning tools for approximating the solution to partial differential equations (PDEs). These networks map input functions that describe material properties, forcing functions and boundary data to the solution of a PDE. This work describes a new architecture for operator networks that mimics the form of the numerical solution obtained from an approximate variational or weak formulation of the problem. The application of these ideas to a generic elliptic PDE leads to a variationally mimetic operator network (VarMiON). Like the conventional Deep Operator Network (DeepONet) the VarMiON is also composed of a sub-network that constructs the basis functions for the output and another that constructs the coefficients for these basis functions. However, in contrast to the DeepONet, the architecture of these sub-networks in the VarMiON is precisely determined. An analysis of the error in the VarMiON solution reveals that it contains contributions from the error in the training data, the training error, the quadrature error in sampling input and output functions, and a "covering error" that measures the distance between the test input functions and the nearest functions in the training dataset. It also depends on the stability constants for the exact solution operator and its VarMiON approximation. The application of the VarMiON to a canonical elliptic PDE and a nonlinear PDE reveals that for approximately the same number of network parameters, on average the VarMiON incurs smaller errors than a standard DeepONet and a recently proposed multiple-input operator network (MIONet). Further, its performance is more robust to variations in input functions, the techniques used to sample the input and output functions, the techniques used to construct the basis functions, and the number of input functions.Comment: 49 pages, 18 figures, 1 Appendi

    Energy efficiency of information transmission by electrically coupled neurons

    Full text link
    The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction takes place at relatively low values of energy consumption and the ratio of mutual information to energy consumption is relatively high. Therefore, communicating at these coupling values could be energetically the most efficient option

    Imaging of hydrothermal altered zones in Wadi Al-Bana, in southern Yemen, using remote sensing techniques and very low frequency–electromagnetic data

    Get PDF
    © 2019, Saudi Society for Geosciences. Economic mineralization and hydrothermally altered zones are areas of great economic interests. This study focusses on hydrothermal altered zones of high mineralization potentials in Wadi Al-Bana, in southern Yemen. An azimuthal very low frequency–electromagnetic (AVLF-EM) data acquisition was conducted in search for mineralization in the study area. The study integrated observations from geophysical field data with others extracted from object-oriented principal component analysis (PCA) to better map and understand mineralization in the investigated area. This technique was applied to two data sets, ASTER and Landsat 8 Operational Land Imager (OLI) imagery. The results of PCA revealed high accuracy in detecting alteration minerals and for mapping zones of high concentration of these minerals. The PCA-based distribution of selected alteration zones correlated spatially with high conductivity anomalies in the subsurface that were detected by VLF measurements. Finally, a GIS model was built and successfully utilized to categorize the resulted altered zones, into three levels. [Figure not available: see fulltext.]
    • …
    corecore