666 research outputs found
A Metric for Gradient RG Flow of the Worldsheet Sigma Model Beyond First Order
Tseytlin has recently proposed that an action functional exists whose
gradient generates to all orders in perturbation theory the Renormalization
Group (RG) flow of the target space metric in the worldsheet sigma model. The
gradient is defined with respect to a metric on the space of coupling constants
which is explicitly known only to leading order in perturbation theory, but at
that order is positive semi-definite, as follows from Perelman's work on the
Ricci flow. This gives rise to a monotonicity formula for the flow which is
expected to fail only if the beta function perturbation series fails to
converge, which can happen if curvatures or their derivatives grow large. We
test the validity of the monotonicity formula at next-to-leading order in
perturbation theory by explicitly computing the second-order terms in the
metric on the space of coupling constants. At this order, this metric is found
not to be positive semi-definite. In situations where this might spoil
monotonicity, derivatives of curvature become large enough for higher order
perturbative corrections to be significant.Comment: 15 pages; Erroneous sentence in footnote 14 removed; this version
therefore supersedes the published version (our thanks to Dezhong Chen for
the correction
A Bakry-\'Emery Almost Splitting Result With Applications to the Topology of Black Holes
The almost splitting theorem of Cheeger-Colding is established in the setting
of almost nonnegative generalized -Bakry-\'{E}mery Ricci curvature, in which
is positive and the associated vector field is not necessarily required to
be the gradient of a function. In this context it is shown that with a diameter
upper bound and volume lower bound the fundamental group of such manifolds is
almost abelian. Furthermore, extensions of well-known results concerning Ricci
curvature lower bounds are given for generalized -Bakry-\'{E}mery Ricci
curvature. These include: the first Betti number bound of Gromov and Gallot,
Anderson's finiteness of fundamental group isomorphism types, volume
comparison, the Abresch-Gromoll inequality, and a Cheng-Yau gradient estimate.
Finally, this analysis is applied to stationary vacuum black holes in higher
dimensions to find that low temperature horizons must have limited topology,
similar to the restrictions exhibited by (extreme) horizons of zero
temperature.Comment: Comm. Math. Phys., to appea
A uniqueness theorem for the adS soliton
The stability of physical systems depends on the existence of a state of
least energy. In gravity, this is guaranteed by the positive energy theorem.
For topological reasons this fails for nonsupersymmetric Kaluza-Klein
compactifications, which can decay to arbitrarily negative energy. For related
reasons, this also fails for the AdS soliton, a globally static, asymptotically
toroidal spacetime with negative mass. Nonetheless, arguing from
the AdS/CFT correspondence, Horowitz and Myers (hep-th/9808079) proposed a new
positive energy conjecture, which asserts that the AdS soliton is the unique
state of least energy in its asymptotic class. We give a new structure theorem
for static spacetimes and use it to prove uniqueness of the AdS
soliton. Our results offer significant support for the new positive energy
conjecture and add to the body of rigorous results inspired by the AdS/CFT
correspondence.Comment: Revtex, 4 pages; Matches published version. More detail in Abstract
and one equation corrected. For details of proofs and further results, see
hep-th/020408
The Positivity of Energy for Asymptotically Anti-de Sitter Spacetimes
We use the formulation of asymptotically anti-de Sitter boundary conditions
given by Ashtekar and Magnon to obtain a coordinate expression for the general
asymptotically AdeS metric in a neighbourhood of infinity. From this, we are
able to compute the time delay of null curves propagating near infinity. If the
gravitational mass is negative, so will be the time delay (relative to null
geodesics at infinity) for certain null geodesics in the spacetime. Following
closely an argument given by Penrose, Sorkin, and Woolgar, who treated the
asymptotically flat case, we are then able to argue that a negative time delay
is inconsistent with non-negative matter-energies in spacetimes having good
causal properties. We thereby obtain a new positive mass theorem for these
spacetimes. The theorem may be applied even when the matter flux near the
boundary-at-infinity falls off so slowly that the mass changes, provided the
theorem is applied in a time-averaged sense. The theorem also applies in
certain spacetimes having local matter-energy that is sometimes negative, as
can be the case in semi-classical gravity.Comment: (Plain TeX - figures not included
The Cosmic Censor Forbids Naked Topology
For any asymptotically flat spacetime with a suitable causal structure
obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying
conditions guaranteeing focusing of complete null geodesics, we prove that
active topological censorship holds. We do not assume global hyperbolicity, and
therefore make no use of Cauchy surfaces and their topology. Instead, we
replace this with two underlying assumptions concerning the causal structure:
that no compact set can signal to arbitrarily small neighbourhoods of spatial
infinity (``-avoidance''), and that no future incomplete null geodesic is
visible from future null infinity. We show that these and the focusing
condition together imply that the domain of outer communications is simply
connected. Furthermore, we prove lemmas which have as a consequence that if a
future incomplete null geodesic were visible from infinity, then given our
-avoidance assumption, it would also be visible from points of spacetime
that can communicate with infinity, and so would signify a true naked
singularity.Comment: To appear in CQG, this improved version contains minor revisions to
incorporate referee's suggestions. Two revised references. Plain TeX, 12
page
Theorems on gravitational time delay and related issues
Two theorems related to gravitational time delay are proven. Both theorems
apply to spacetimes satisfying the null energy condition and the null generic
condition. The first theorem states that if the spacetime is null geodesically
complete, then given any compact set , there exists another compact set
such that for any , if there exists a ``fastest null
geodesic'', , between and , then cannot enter . As
an application of this theorem, we show that if, in addition, the spacetime is
globally hyperbolic with a compact Cauchy surface, then any observer at
sufficiently late times cannot have a particle horizon. The second theorem
states that if a timelike conformal boundary can be attached to the spacetime
such that the spacetime with boundary satisfies strong causality as well as a
compactness condition, then any ``fastest null geodesic'' connecting two points
on the boundary must lie entirely within the boundary. It follows from this
theorem that generic perturbations of anti-de Sitter spacetime always produce a
time delay relative to anti-de Sitter spacetime itself.Comment: 15 pages, 1 figure. Example of gauge perturbation changed/corrected.
Two footnotes added and one footnote remove
A Causal Order for Spacetimes with Lorentzian Metrics: Proof of Compactness of the Space of Causal Curves
We recast the tools of ``global causal analysis'' in accord with an approach
to the subject animated by two distinctive features: a thoroughgoing reliance
on order-theoretic concepts, and a utilization of the Vietoris topology for the
space of closed subsets of a compact set. We are led to work with a new causal
relation which we call , and in terms of it we formulate extended
definitions of concepts like causal curve and global hyperbolicity. In
particular we prove that, in a spacetime \M which is free of causal cycles,
one may define a causal curve simply as a compact connected subset of \M
which is linearly ordered by . Our definitions all make sense for
arbitrary metrics (and even for certain metrics which fail to be
invertible in places). Using this feature, we prove for a general metric,
the familiar theorem that the space of causal curves between any two compact
subsets of a globally hyperbolic spacetime is compact. We feel that our
approach, in addition to yielding a more general theorem, simplifies and
clarifies the reasoning involved. Our results have application in a recent
positive energy theorem, and may also prove useful in the study of topology
change. We have tried to make our treatment self-contained by including proofs
of all the facts we use which are not widely available in reference works on
topology and differential geometry.Comment: Two small revisions to accomodate errors brought to our attention by
R.S. Garcia. No change to chief results. 33 page
The Generalized Second Law implies a Quantum Singularity Theorem
The generalized second law can be used to prove a singularity theorem, by
generalizing the notion of a trapped surface to quantum situations. Like
Penrose's original singularity theorem, it implies that spacetime is null
geodesically incomplete inside black holes, and to the past of spatially
infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead,
the generalized second law requires that there only be a finite amount of
entropy producing processes in the past, unless there is a reversal of the
arrow of time. In asymptotically flat spacetime, the generalized second law
also rules out traversable wormholes, negative masses, and other forms of
faster-than-light travel between asymptotic regions, as well as closed timelike
curves. Furthermore it is impossible to form baby universes which eventually
become independent of the mother universe, or to restart inflation. Since the
semiclassical approximation is used only in regions with low curvature, it is
argued that the results may hold in full quantum gravity. An introductory
section describes the second law and its time-reverse, in ordinary and
generalized thermodynamics, using either the fine-grained or the coarse-grained
entropy. (The fine-grained version is used in all results except those relating
to the arrow of time.) A proof of the coarse-grained ordinary second law is
given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised
(4.1, 5.2), more comments on AdS. v3: major revisions including change of
title. v4: similar to published version, but with corrections to plan of
paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of
Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new
footnote
- …