6,362 research outputs found
Age determination of the HR8799 planetary system using asteroseismology
Discovery of the first planetary system by direct imaging around HR8799 has
made the age determination of the host star a very important task. This
determination is the key to derive accurate masses of the planets and to study
the dynamical stability of the system. The age of this star has been estimated
using different procedures. In this work we show that some of these procedures
have problems and large uncertainties, and the real age of this star is still
unknown, needing more observational constraints. Therefore, we have developed a
comprehensive modeling of HR8799, and taking advantage of its gamma
Doradus-type pulsations, we have estimated the age of the star using
asteroseismology. The accuracy in the age determination depends on the rotation
velocity of the star, and therefore an accurate value of the inclination angle
is required to solve the problem. Nevertheless, we find that the age estimate
for this star previously published in the literature ([30,160] Myr) is
unlikely, and a more accurate value might be closer to the Gyr. This
determination has deep implications on the value of the mass of the objects
orbiting HR8799. An age around 1 Gyr implies that these objects are
brown dwarfs.Comment: 5 pages, 3 figures, accepted in MNRAS Letter
Spin dependent Momentum Distributions in Deformed Nuclei
We study the properties of the spin dependent one body density in momentum
space for odd--A polarized deformed nuclei within the mean field approximation.
We derive analytic expressions connecting intrinsic and laboratory momentum
distributions. The latter are related to observable transition densities in
{\bf p}--space that can be probed in one nucleon knock--out reactions from
polarized targets. It is shown that most of the information contained in the
intrinsic spin dependent momentum distribution is lost when the nucleus is not
polarized. Results are presented and discussed for two prolate nuclei,
Ne and Mg, and for one oblate nucleus, Ar. The effects of
deformation are highlighted by comparison to the case of odd--A nuclei in the
spherical model.Comment: Latex 2.09. 25 pages and 6 figures (available from
[email protected]), to appear in Ann. of Phy
Coherent delocalization: Views of entanglement in different scenarios
The concept of entanglement was originally introduced to explain correlations
existing between two spatially separated systems, that cannot be described
using classical ideas. Interestingly, in recent years, it has been shown that
similar correlations can be observed when considering different degrees of
freedom of a single system, even a classical one. Surprisingly, it has also
been suggested that entanglement might be playing a relevant role in certain
biological processes, such as the functioning of pigment-proteins that
constitute light-harvesting complexes of photosynthetic bacteria. The aim of
this work is to show that the presence of entanglement in all of these
different scenarios should not be unexpected, once it is realized that the very
same mathematical structure can describe all of them. We show this by
considering three different, realistic cases in which the only condition for
entanglement to exist is that a single excitation is coherently delocalized
between the different subsystems that compose the system of interest
- …