1,959 research outputs found
Modular realizations of hyperbolic Weyl groups
We study the recently discovered isomorphisms between hyperbolic Weyl groups and unfamiliar modular groups. These modular groups are defined over integer domains in normed division algebras, and we focus on the cases involving quaternions and octonions. We outline how to construct and analyse automorphic forms for these groups; their structure depends on the underlying arithmetic properties of the integer domains. We also give a new realization of the Weyl group W(E8) in terms of unit octavians and their automorphism group
Modular realizations of hyperbolic Weyl groups
We study the recently discovered isomorphisms between hyperbolic Weyl groups and unfamiliar modular groups. These modular groups are defined over integer domains in normed division algebras, and we focus on the cases involving quaternions and octonions. We outline how to construct and analyse automorphic forms for these groups; their structure depends on the underlying arithmetic properties of the integer domains. We also give a new realization of the Weyl group W(E8) in terms of unit octavians and their automorphism group
Remarks on E11 approach
We consider a few topics in approach to superstring/M-theory: even
subgroups ( orbifolds) of , n=11,10,9 and their connection to
Kac-Moody algebras; subgroup of and coincidence of one of
its weights with the weight of , known to contain brane charges;
possible form of supersymmetry relation in ; decomposition of
w.r.t. the and its square root at first few levels; particle orbit
of . Possible relevance of coadjoint orbits method is
noticed, based on a self-duality form of equations of motion in .Comment: Two references adde
Infinite-Dimensional Algebras as Extensions of Kinematic Algebras
Kinematic algebras can be realised on geometric spaces and constrain the physical models that can live on these spaces. Different types of kinematic algebras exist and we consider the interplay of these algebras for non-relativistic limits of a relativistic system, including both the Galilei and the Carroll limit. We develop a framework that captures systematically the corrections to the strict non-relativistic limit by introducing new infinite-dimensional algebras, with emphasis on the Carroll case. One of our results is to highlight a new type of duality between Galilei and Carroll limits that extends to corrections as well. We realise these algebras in terms of particle models. Other applications include curvature corrections and particles in a background electro-magnetic field
Galilean free Lie algebras
We construct free Lie algebras which, together with the algebra of spatial rotations, form infinite-dimensional extensions of finite-dimensional Galilei Maxwell algebras appearing as global spacetime symmetries of extended non-relativistic objects and non-relativistic gravity theories. We show how various extensions of the ordinary Galilei algebra can be obtained by truncations and contractions, in some cases via an affine Kac-Moody algebra. The infinite-dimensional Lie algebras could be useful in the construction of generalized Newton-Cartan theories gravity theories and the objects that couple to them
E10 and SO(9,9) invariant supergravity
We show that (massive) D=10 type IIA supergravity possesses a hidden rigid
SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional
reduction to one (time-like) dimension. We explicitly construct the associated
locally supersymmetric Lagrangian in one dimension, and show that its bosonic
sector, including the mass term, can be equivalently described by a truncation
of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a
decomposition of E10 under its so(9,9) subalgebra. This decomposition is
presented up to level 10, and the even and odd level sectors are identified
tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further
truncation to the level \ell=0 sector yields a model related to the reduction
of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated
to the latter, is shown to be a proper subalgebra of E10, in accord with the
embedding of type I into type IIA supergravity. The corresponding decomposition
of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable
by downloading sourc
Sugawara-type constraints in hyperbolic coset models
In the conjectured correspondence between supergravity and geodesic models on
infinite-dimensional hyperbolic coset spaces, and E10/K(E10) in particular, the
constraints play a central role. We present a Sugawara-type construction in
terms of the E10 Noether charges that extends these constraints infinitely into
the hyperbolic algebra, in contrast to the truncated expressions obtained in
arXiv:0709.2691 that involved only finitely many generators. Our extended
constraints are associated to an infinite set of roots which are all imaginary,
and in fact fill the closed past light-cone of the Lorentzian root lattice. The
construction makes crucial use of the E10 Weyl group and of the fact that the
E10 model contains both D=11 supergravity and D=10 IIB supergravity. Our
extended constraints appear to unite in a remarkable manner the different
canonical constraints of these two theories. This construction may also shed
new light on the issue of `open constraint algebras' in traditional canonical
approaches to gravity.Comment: 49 page
A group model for stable multi-subject ICA on fMRI datasets
Spatial Independent Component Analysis (ICA) is an increasingly used
data-driven method to analyze functional Magnetic Resonance Imaging (fMRI)
data. To date, it has been used to extract sets of mutually correlated brain
regions without prior information on the time course of these regions. Some of
these sets of regions, interpreted as functional networks, have recently been
used to provide markers of brain diseases and open the road to paradigm-free
population comparisons. Such group studies raise the question of modeling
subject variability within ICA: how can the patterns representative of a group
be modeled and estimated via ICA for reliable inter-group comparisons? In this
paper, we propose a hierarchical model for patterns in multi-subject fMRI
datasets, akin to mixed-effect group models used in linear-model-based
analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based
on i) probabilistic dimension reduction of the individual data, ii) canonical
correlation analysis to identify a data subspace common to the group iii)
ICA-based pattern extraction. In addition, we introduce a procedure based on
cross-validation to quantify the stability of ICA patterns at the level of the
group. We compare our method with state-of-the-art multi-subject fMRI ICA
methods and show that the features extracted using our procedure are more
reproducible at the group level on two datasets of 12 healthy controls: a
resting-state and a functional localizer study
Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings
We investigate one-loop four-point scattering of non-abelian gauge bosons in heterotic string theory and identify new connections with the corresponding open-string amplitude. In the low-energy expansion of the heterotic-string amplitude, the integrals over torus punctures are systematically evaluated in terms of modular graph forms, certain non-holomorphic modular forms. For a specific torus integral, the modular graph forms in the low-energy expansion are related to the elliptic multiple zeta values from the analogous open-string integrations over cylinder boundaries. The detailed correspondence between these modular graph forms and elliptic multiple zeta values supports a recent proposal for an elliptic generalization of the single-valued map at genus zero
Dynamik der Radonfolgeprodukt-Aktivität imSpeichel nach therapeutischer Radon-Exposition
Radon decay product activity was measured in saliva of 10 male patients 20-30 min after a 1-hour radon exposure in the gallery of the Gasteiner Heilstollen (radon activity 36.2 kBq/m(3), radon progeny activity 20.3 kBq/m(3)), in 1 patient showing relatively high activity (75th percentile) measurements were continued until 65 min after exposure. Patients were asked to collect about 2 mi of saliva in the mouth and produce it on a filter. After drying the filter at 300 degrees C, radon progeny activity was measured. Activity (median) at 20-30 min after leaving the treatment area was 4.5 Bq (25th percentile 1 Bq; 75th percentile 21 Bq). In the patient who underwent additional measurements the activity showed a further increase up to 29 Bq (35 min after radon exposure) before it continuously decreased to a very low activity (1-3 Bq) at 65 min after exposure. The results show that a significantly increased radon decay product activity is found in saliva after speleotherapeutic radon exposure. Maximum values were observed 35 min after radon exposure. Radon decay product activity almost disappeared after about 1 h
- …