16 research outputs found

    Light Perception in Two Strictly Subterranean Rodents: Life in the Dark or Blue?

    Get PDF
    BACKGROUND: The African mole-rats (Bathyergidae, Rodentia) are strictly subterranean, congenitally microphthalmic rodents that are hardly ever exposed to environmental light. Because of the lack of an overt behavioural reaction to light, they have long been considered to be blind. However, recent anatomical studies have suggested retention of basic visual capabilities. In this study, we employed behavioural tests to find out if two mole-rat species are able to discriminate between light and dark, if they are able to discriminate colours and, finally, if the presence of light in burrows provokes plugging behaviour, which is assumed to have a primarily anti-predatory function. METHODOLOGY/PRINCIPAL FINDING: We used a binary choice test to show that the silvery mole-rat Heliophobius argenteocinereus and the giant mole-rat Fukomys mechowii exhibit a clear photoavoidance response to full-spectrum ("white"), blue and green-yellow light, but no significant reaction to ultraviolet or red light during nest building. The mole-rats thus retain dark/light discrimination capabilities and a capacity to perceive short to medium-wavelength light in the photopic range of intensities. These findings further suggest that the mole-rat S opsin has its absorption maximum in the violet/blue part of the spectrum. The assay did not yield conclusive evidence regarding colour discrimination. To test the putative role of vision in bathyergid anti-predatory behaviour, we examined the reaction of mole-rats to the incidence of light in an artificial burrow system. The presence of light in the burrow effectively induced plugging of the illuminated tunnel. CONCLUSION/SIGNIFICANCE: Our findings suggest that the photopic vision is conserved and that low acuity residual vision plays an important role in predator avoidance and tunnel maintenance in the African mole-rats

    Self-oscillation of the two-axis gyroscopic stabilizer

    Get PDF
    This article was written at the Technical University of Liberec, Faculty of Mechanical Engineering with the support of the Institutional Endowment for the Long Term Conceptual Development of Research Institutes, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2018.Van der Pol introduced a solution of the self-oscillations of spring suspended body siting upon the uniform velocity moving rough conveyor belt in 1934. Friction between body and conveyor belt was non-Coulomb, which characteristics has negative slope in the certain interval - see Fig. 1. This classic problem, which is introduced in lots of non-linear vibrations related textbooks, motivated several works whose refer to the fact that solution leads to the same equation (such as pin rotating in hub). Chernikov in demonstrates that transformation of one-axis gyrostabilizer self-oscillations lead to the same equation in certain case. Mentioned Chernikov�s work motivated us to analyze selfoscillations of two-axis gyroscopic stabilizer with non-Coulomb friction in the axis of stabilizer outer gimbal caused by uniform rotation speed of the stabilizer base

    NON-LINEAR DAMPING IN THE SYSTEM OF TWO-AXIS GYROSCOPIC STABILIZER

    No full text
    This paper tackles the reasons for the application of the shock absorbers in the mechanical system of the two-axis gyroscopic stabilizer. The procedure of choice of the suitable damping torque characteristics based on the numeric simulations is proposed as well

    Gas composition and its daily changes within burrows and nests of an Afroalpine fossorial rodent, the giant root-rat Tachyoryctes macrocephalus

    No full text
    Fossorial mammals are supposed to face hypoxic and hypercapnic conditions, but such conditions have been rarely encountered in their natural burrow systems. Gas composition in burrows after heavy rains, deeper burrows and especially nest chambers, where animals usually spend most of the day, could be even more challenging than in shallow burrows. Such situations, however, have been rarely surveyed in the wild. In our study, we determined concentrations of O2, CO2 and CH4 in active burrows and nests of the giant root-rat Tachyoryctes macrocephalus, a large fossorial rodent endemic to the Afroalpine zone of the Bale Mountains in Ethiopia. We were able to determine the precise location of nests by tracking individuals equipped with radio-collars. To the best of our knowledge, this is the first study that analyses air samples taken directly from the nests of actually occupied burrow systems in any free-living fossorial mammal. We found no evidence for environmental hypoxia in the examined burrows and nests (range 19.7–21.6% O2). Concentrations of CO2 in the burrows increased after the burrows were plugged in the evening, but did not reach physiologically problematic levels. The highest CO2 concentrations in burrows were detected in the evening during a wet period (up to 0.44%). In root-rat nest chambers, the highest (but still harmless) CO2 concentrations (up to 1.31%) were detected in the morning (measured in the late dry season only) together with an elevated concentration (up to 13.5 ppm) of CH4. Regular surface activity of giant root-rats, combined with the relatively large dimensions of their nest chambers and tunnels, and the absence of heavy soils, may contribute to harmless atmospheres within their burrow systems
    corecore