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Van der Pol introduced a solution of the self-oscillations of spring suspended body siting 

upon the uniform velocity moving rough conveyor belt in 1934. Friction between body and 

conveyor belt was non-Coulomb, which characteristics has negative slope in the certain 

interval – see Fig. 1. This classic problem, which is introduced in lots of non-linear vibrations 

related textbooks, motivated several works (see [1, 2, 3, 5]) whose refer to the fact that 

solution leads to the same equation (such as pin rotating in hub). Chernikov in [3] 

demonstrates that transformation of one-axis gyrostabilizer self-oscillations lead to the same 

equation in certain case. Mentioned Chernikov’s work motivated us to analyze self-

oscillations of two-axis gyroscopic stabilizer with non-Coulomb friction in the axis of 

stabilizer outer gimbal caused by uniform rotation speed of the stabilizer base. 
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Fig. 1. Non-Coulomb friction characteristics  
 

Similarly to Chernikov, we base our analysis on the system simplified as much as 

possible, using the following assumptions: 

1. Mechanical system is in basic configuration – axes of gimbals are mutually 

perpendicular and horizontal, while flywheel’s axes are vertical. 

2. Correction and compensation feedbacks are deactivated – so that skew symmetric 

matrix of non-conservative forces is zero. 

3. All gimbals and flywheels are static and dynamic balanced. 

4. Flywheels angular momentum is sufficiently high. 

Routh equations of motion are: 
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where a11 to a44 stand for algebraic functions of moments of inertia, H stands for angular 

momentum of the flywheels, MTi are for dry friction torques and 0  stands for a constant 

rotation speed of the stabilizer base. Second third and fourth equations have first integrals. 

According to Merkin [4], roots of characteristic polynomial are divided into two groups – 

nutation and precession, if angular momentum H is sufficiently high. But in spite of the 

absence of non-conservative positional forces (so called radial corrections), roots of the 
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precession motion are identically zero. The only torque acting on the system is non-Coulomb 

friction in the first Eq. (2), which describes a motion of the outer gimbal. Thus the 

characteristic polynomial of the system Eq. (2) with no damping has two pairs of the pure 

imaginary roots whose imaginary parts represents the nutation frequencies. 

Discontinuity at zero mutual velocity and a cubic part of the non-Coulomb friction torque 

characteristics Eq. (1) are the only nonlinearities in the system. We are tackling this 

nonlinearity using a harmonic linearization method, similarly to [3]. We are assuming that the 

frequency of the self-oscillations will be close to one of the natural frequencies. We can 

determine the amplitudes of the self-oscillations using the condition of the real part of 

characteristic polynomial root of the system with a linearized damping force to be identically 

zero at the natural frequency. 

  
Fig. 2. Phase trajectory of outer gimbal with respect to 

inertial system – amplitudes reaching a limit cycle 

Fig. 3. Phase trajectory of outer gimbal with respect to 

inertial system – asymptotic stable 
 

 

Limiting ourselves on the semi-trivial solution (assuming motion only with one frequency) 

and using table of the non-Coulomb friction characteristics according to Chernikov [1], we 

can show, by the numeric simulation of the system Eq. (2) , e.g. Fig. 2 and Fig. 3, that the 

phase trajectories of the motion for the certain setting of base rotation speed 
0  are 

converging to the limit cycle and their amplitudes corresponds to the approximate solution of 

the linearized system. This can be considered as a proof of the self-oscillations existence. 
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