1,905 research outputs found

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Polarization effects on the effective temperature of an ultracold electron source

    Get PDF
    The influence has been studied of the ionization laser polarization on the effective temperature of an ultracold electron source, which is based on near-threshold photoionization. This source is capable of producing both high-intensity and high-coherence electron pulses, with applications in for example electron diffraction experiments. For both nanosecond and femtosecond photoionization, a sinusoidal dependence of the temperature on polarization angle has been found. For most experimental conditions, the temperature is minimal when the polarization coincides with the direction of acceleration. However, surprisingly, for nanosecond ionization a regime exists when the temperature is minimal when the polarization is perpendicular to the acceleration direction. This shows that in order to create electron bunches with the highest transverse coherence length, it is important to control the polarization of the ionization laser. The general trends and magnitudes of the temperature measurements are described by a model, based on the analysis of classical electron trajectories; this model further deepens our understanding of the internal mechanisms during the photoionization process. Furthermore, for nanosecond ionization, charge oscillations as a function of laser polarization have been observed; for most situations the oscillation amplitude is small

    Analytical Model of an Isolated Single-atom Electron Source

    Full text link
    An analytical model of a single-atom electron source is presented, where electrons are created by near-threshold photoionization of an isolated atom. The model considers the classical dynamics of the electron just after the photon absorption, i.e. its motion in the potential of a singly charged ion and a uniform electric field used for acceleration. From closed expressions for the asymptotic transverse electron velocities and trajectories, the effective source temperature and the effective source size can be calculated. The influence of the acceleration field strength and the ionization laser energy on these properties has been studied. With this model, a single-atom electron source with the optimum electron beam properties can be designed. Furthermore, we show that the model is also applicable to ionization of rubidium atoms, thus also describes the ultracold electron source, which is based on photoionization of laser-cooled alkali atoms

    Single-Shot Electron Diffraction using a Cold Atom Electron Source

    Get PDF
    Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness. Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.Comment: This is an author-created, un-copyedited version of an article published in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0953-4075/48/21/21400
    corecore