5 research outputs found

    A paired-kidney allocation study found superior survival with HLA-DR compatible kidney transplants in the Eurotransplant Senior Program

    Get PDF
    The Eurotransplant Senior Program (ESP) has expedited the chance for elderly patients with kidney failure to receive a timely transplant. This current study evaluated survival parameters of kidneys donated after brain death with or without matching for HLA-DR antigens. This cohort study evaluated the period within ESP with paired allocation of 675 kidneys from donors 65 years and older to transplant candidates 65 years and older, the first kidney to 341 patients within the Eurotransplant Senior DR-compatible Program and 334 contralateral kidneys without (ESP) HLA-DR antigen matching. We used Kaplan-Meier estimates and competing risk analysis to assess all cause mortality and kidney graft failure, respectively. The log-rank test and Cox proportional hazards regression were used for comparisons. Within ESP, matching for HLA-DR antigens was associated with a significantly lower five-year risk of mortality (hazard ratio 0.71; 95% confidence interval 0.53-0.95) and significantly lower cause-specific hazards for kidney graft failure and return to dialysis at one year (0.55; 0.35-0.87) and five years (0.73; 0.53-0.99) post-transplant. Allocation based on HLA-DR matching resulted in longer cold ischemia (mean difference 1.00 hours; 95% confidence interval: 0.32-1.68) and kidney offers with a significantly shorter median dialysis vintage of 2.4 versus 4.1 yrs. in ESP without matching. Thus, our allocation based on HLA-DR matching improved five-year patient and kidney allograft survival. Hence, our paired allocation study suggests a superior outcome of HLA-DR matching in the context of old-for-old kidney transplantation.</p

    Low Cycle Fatigue and Relaxation Performance of Ferritic–Martensitic Grade P92 Steel

    No full text
    Due to their excellent creep resistance and good oxidation resistance, 9&ndash;12% Cr ferritic&ndash;martensitic stainless steels are widely used as high temperature construction materials in power plants. However, the mutual combination of different loadings (e.g., creep and fatigue), due to a &ldquo;flexible&rdquo; operation of power plants, may seriously reduce the lifetimes of the respective components. In the present study, low cycle fatigue (LCF) and relaxation fatigue (RF) tests performed on grade P92 helped to understand the behavior of ferritic&ndash;martensitic steels under a combined loading. The softening and lifetime behavior strongly depend on the temperature and total strain range. Especially at small strain amplitudes, the lifetime is seriously reduced when adding a hold time which indicates the importance of considering technically relevant small strains

    Experimental data from service-like creep-fatigue experiments on grade P92 steel

    No full text
    This article refers to the research article entitled “Creep-Fatigue of P92 in Service-Like Tests with Combined Stress- and Strain-Controlled Dwell Times” [1]. It presents experimental mechanical data from complex service-like creep-fatigue experiments performed isothermally at 620°C and a low strain amplitude of 0.2 % on tempered martensite-ferritic grade P92 steel. The datasets in text file format provide cyclic deformation (minimum and maximum stresses) and the total (hysteresis) data of all recorded fatigue cycles for three different creep-fatigue experiments: 1) a standard relaxation fatigue (RF) test with symmetrical dwell times of three minutes introduced at minimum and maximum strain, 2) a fully strain-controlled service-like relaxation (SLR) test combining these three-minute peak strain dwells with a 30-minute dwell in between at zero strain, and 3) a partly stress-controlled service-like creep (SLC) test combining the three-minute peak strain dwells with 30-minute dwells at constant stress. Such service-like (SL) tests with additional long-term stress- and strain-controlled dwell times are non-standard, rare, and expensive, making these data very valuable. They may be used to approximate cyclic softening in the technically relevant range, for the design of complex SL experiments, or for detailed analyses of stress-strain hystereses (e.g., for stress or strain partitioning methods, for the determination of hysteresis energies (work), inelastic strain components, etc.). In addition, the latter analyses may supply important input for advanced parametric lifetime modeling of components under creep-fatigue loading or model calibration parameters
    corecore