10 research outputs found

    Feature Point Tracking-Based Localization of Colon Capsule Endoscope

    No full text
    In large bowel investigations using endoscopic capsules and upon detection of significant findings, physicians require the location of those findings for a follow-up therapeutic colonoscopy. To cater to this need, we propose a model based on tracking feature points in consecutive frames of videos retrieved from colon capsule endoscopy investigations. By locally approximating the colon as a cylinder, we obtained both the displacement and the orientation of the capsule using geometrical assumptions and by setting priors on both physical properties of the intestine and the image sample frequency of the endoscopic capsule. Our proposed model tracks a colon capsule endoscope through the large intestine for different prior selections. A discussion on validating the findings in terms of intra and inter capsule and expert panel validation is provided. The performance of the model is evaluated based on the average difference in multiple reconstructed capsule’s paths through the large intestine. The path difference averaged over all videos was as low as 4±0.7 cm, with min and max error corresponding to 1.2 and 6.0 cm, respectively. The inter comparison addresses frame classification for the rectum, descending and sigmoid, splenic flexure, transverse, hepatic, and ascending, with an average accuracy of 86%

    Assessment of Early Stopping through Statistical Health Prognostic Models for Empirical RUL Estimation in Wind Turbine Main Bearing Failure Monitoring

    No full text
    Details about a fault’s progression, including the remaining-useful-lifetime (RUL), are key features in monitoring, industrial operation and maintenance (O&M) planning. In order to avoid increases in O&M costs through subjective human involvement and over-conservative control strategies, this work presents models to estimate the RUL for wind turbine main bearing failures. The prediction of the RUL is estimated from a likelihood function based on concepts from prognostics and health management, and survival analysis. The RUL is estimated by training the model on run-to-failure wind turbines, extracting a parametrization of a probability density function. In order to ensure analytical moments, a Weibull distribution is assumed. Alongside the RUL model, the fault’s progression is abstracted as discrete states following the bearing stages from damage detection, through overtemperature warnings, to over overtemperature alarms and failure, and are integrated in a separate assessment model. Assuming a naïve O&M plan (wind turbines are run as close to failure as possible without regards for infrastructure or supply chain constrains), 67 non run-to-failure wind turbines are assessed with respect to their early stopping, revealing the potential RUL lost. These are turbines that have been stopped by the operator prior to their failure. On average it was found that wind turbines are stopped 13 days prior to their failure, accumulating 786 days of potentially lost operations across the 67 wind turbines

    AID-U-Net: An Innovative Deep Convolutional Architecture for Semantic Segmentation of Biomedical Images

    No full text
    Semantic segmentation of biomedical images found its niche in screening and diagnostic applications. Recent methods based on deep learning convolutional neural networks have been very effective, since they are readily adaptive to biomedical applications and outperform other competitive segmentation methods. Inspired by the U-Net, we designed a deep learning network with an innovative architecture, hereafter referred to as AID-U-Net. Our network consists of direct contracting and expansive paths, as well as a distinguishing feature of containing sub-contracting and sub-expansive paths. The implementation results on seven totally different databases of medical images demonstrated that our proposed network outperforms the state-of-the-art solutions with no specific pre-trained backbones for both 2D and 3D biomedical image segmentation tasks. Furthermore, we showed that AID-U-Net dramatically reduces time inference and computational complexity in terms of the number of learnable parameters. The results further show that the proposed AID-U-Net can segment different medical objects, achieving an improved 2D F1-score and 3D mean BF-score of 3.82% and 2.99%, respectively

    Analysis of diagnostic findings from the european mobile laboratory in Gueckedou, Guinea, march 2014 through march 2015

    No full text
    A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015.; The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively.; The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome.; Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD

    Analysis of diagnostic findings From the European mobile laboratory in Guéckédou, Guinea, March 2014 through March 2015

    No full text
     A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015.status: publishe
    corecore