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a b s t r a c t

A statistical approach to abstract and predict turbine states in an online manner has been developed.
Online inference is performed on temperature measurement residuals to predict the failure state Dn
steps ahead of time. In this framework a case study is performed showing the ability to predict bearing
failure 33 days, on average, ahead of time. The approach is based on the separability of the sufficient
statistics and a hidden variable, namely the state length. The predictive probability is conditioned on the
data available, as well as the state variables. It is shown that the predictive probability can be calculated
by a model for the samples and a hazard function describing the probability for undergoing a state
transition. This study is concerned with the prior training of the model, for which run-to-failure time
series of bearing measurements are used. For the sample model prediction is conditioned on prior in-
formation and predict the next Dn samples from a feature space spanned by the prior samples. By
assuming that the feature space can be described by a multivariate Gaussian distribution, the prediction
is treated as a Gaussian process over the feature space.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The continuous growth of wind energy generating sources,
especially in harsh environments such as off-shore, has led to an
increasing demand on more careful planning and control of oper-
ation and maintenance costs. This has made condition monitoring
and fault diagnosis of wind turbines an even higher priority [1e5].

In this work failure of a turbine or it's components is defined as
being the state of non-operation of aforesaid turbine or compo-
nents. A fault on the other hand is associated with a defect, e.g. a
crack in the bearings. As wind turbines are composed of different
systems, it is intuitive that there are sub-systems which are more
vulnerable to failure than others: the rotor system including the
hub, has a more dominant failure rate than bearing and generator
systems. However, the generator, hydraulic and gearboxes anec-
dotally are considered the bête noires of wind turbines, as, although
not that frequent, the downtime caused by failure in these systems
p), ramezani@mmmi.sdu.dk
(M. Bach-Andersen), niels_
mmmi.sdu.dk (E.S. Nadimi).

t al., Bayesian state predictio
is substantial [3,6,7].
There are a wide variety of monitoring approaches available,

ranging from acoustic analysis to visual inspection. These have
shown potential in early fault detection, with prediction horizons
ranging from seconds to months before a failure [3,8e16]. Amongst
these are approaches that specific target bearing monitoring ap-
proaches [17,18]. Common causes for bearing failure are excessive
load, fatigue, contamination, misalignments, overheating etc., latter
will be addressed in the course of this paper. Additional common
prediction, operation, and condition monitoring approaches are
summarized in Kusiak et al. [19] and M�arquez et al. [20].

As the proposed method in this work is a fault estimation
(including prediction) approach, the comparison to other ap-
proaches in the field is essentially the comparison between the
structure of set approaches. In general, fault estimation can be
categorized into two groups: model based, and data-driven. In case
of the first group, a physical model (such as Vidal et al. [21]) or at
least an approximate state space model of the system (such as Gao
et al. [22] and Liu et al. [23]) is necessary. Given initial information
of the system and the consistency between the real and estimated
variables, these methods have shown to be successful in providing
robust fault estimation. The second group, on the other hand, is
solely based on the recorded data, particularly suited when no
n of wind turbine bearing failure, Renewable Energy (2017), http://
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system informations are available. Although some of the data-
driven methods employ a system model to generate residuals (as
it is the case of this work), the employed models are unsupervised,
such that no prior information of the system is used. The proposed
approach in this study is data-driven and aims to predict baring
fault based on the statistical features of residuals.

The work presented in this paper aims at achieving a high
prediction horizon, but in contrast to other studies, emphasize the
precision of the predictive model in order to provide a predictive
horizon and the time of failure within a specified model accuracy.
The prediction of a failure of a turbine or component is facilitated in
predicting a specific fault. In the case study presented in this work,
this is equal to the prediction of the remaining lifetime until failure
of the turbine, as run-to-failure time series are considered. This is
achieved by abstracting turbine states in a Bayesian framework
[24]. The contribution of this work is to extend the work of Herp
et al. [24] by including a prediction horizon based on modelling
samples as part of a Gaussian process, associated with bearing
failure. Further, training a predictive model by updating the hyper-
parameters, on run-to-failure time series, is added in this work as
well. Investigating faults beyond bearing failure, and especially
unsupervised fault identification and isolation, such as benchmark
models by Dey et al. and Odgaard et al. [15,25,26] will not be
addressed in this study. This challenge is left for consideration in
future work.

The paper is organized as follows: In Section 2 the problem at
hand is formulated and the terminology is introduced. Further, a
brief description of the data is made available. Section 3 introduces
the state transition approach and its extension considering
Gaussian processes. Following the theory of Section 3 the state
prediction is described in Section 4. The proposed approach is put
to use in a case study on bearing failures in Section 5. Finally,
Section 6 concludes the outcome of this paper.
Fig. 1. Run-to-failure time series of bearing temperature for Turbine 1 (top), Turbine 2
(mid) and Turbine 3 (lower), including recorded events ( ). Each row represents a
different type of event group.
2. Formalizing the motivation

Recent work has explored the idea of abstracting states from
wind turbine measurement residuals [24,27]. Under the assump-
tion that wind turbine states can be characterized by changes in the
mean and standard deviation of a time series, a recursive online
algorithm was proposed. Motivated by this work, the question
when will a given state occur? will be addressed.

Although this study is concernedwith run-to-failure residuals of
bearing temperature, the problem will be formulated in a general
way to highlight the universality of the algorithm. Consider Ek to be
any event which is linked to the operation of a wind turbine at time
i, dependent on a hidden variable sðiÞ, representing the current state
of the turbine as well as the data collected up to time i. The question
raised is, what is the probability of detecting Ek or a set of events
fEkg, Dn samples before its occurrence, ℙðDn

���fEkg; sðiÞ; x½1;i�Þ,
conditioned on the prior samples and current state variable? Here,
x½a;b� defines the discrete set of successive observations from time a
to b. Assuming the separability of the process fx1;…; xNg into S �
N states, sðiÞ will characterise the length of the current state with
samples x½SS ;i�. sm referrers to the hidden variable of a wind turbine,
defined by the separability of the process and will also be used to
label the states. The transition between those states are referred to
as state transitions.

Consider fEk00 g as the set of events associated with bearing
temperature failure, the scope of this work, is to show that
ℙðDn��fEk00 g; sðiÞ; x1;iÞ can be calculated by extending the work of
Herp et al. [24] to a wider range of models. The model extension
will focus on the principal of Gaussian processes (Rasmussen et al.
[28]).
Please cite this article in press as: J. Herp, et al., Bayesian state predictio
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2.1. Run-to-failure bearing time series

The data at hand can be divided into two different types:
operational data, in the form of preprocessed Supervised Control
And Data Acquisition (SCADA) data, and status data, referred to as
event data as mentioned earlier.

2.1.1. Residuals of bearing temperature
Three time series of bearing temperature residuals, DT , are

considered for this study and presented in Fig. 1. Summarizing from
the work of Bach-Andersen et al. [18], the underlying model
generating the residuals is not meant to resemble a physical model
of the wind turbine's thermal energy flow, hence an artificial neural
network (ANN) is chosen for modelling the temperatures of the
main bearing component. The input for the model is chosen based
on first principle consideration of the energy diffusion in a wind
turbine, subjected to the bearing assembly. The gear box is
considered the primary thermal source, the diffusion follows
through themain shaft and bearing assembly, before it is dissipated
to the outside of the hub. The model inputs are SCADA data
sampled in 10min intervals, containing active power, generator
speed, gear box oil temperature, ambient temperature, and nacelle
temperature. The model output is re-sampled to hourly resolution.
Furthermore, the ANN model is trained on assumable fault-free
data from the first year of operation for each turbine.

Besides the common behaviour explored in Fig. 1, it is essential
that the time series under considerations show common statistics,
in order to utilize machine learning concepts of training hyper-
parameters for state prediction. Plotting the quantiles of the time
series against the quantiles of a normal distribution, Fig. 2, shows
that the main part of all three time series follow a normal distri-
bution with zero mean and unit variance. Further, Fig. 2 indicates
that the buildup in temperature follows a similar distribution in all
n of wind turbine bearing failure, Renewable Energy (2017), http://



Fig. 2. Quantiles of the bearing residuals for the turbines under consideration
compared to the quantiles of a standard normal distribution.
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time series. As such, the assumption is made that we can train on
one or more time series and apply the obtained model on similar
time series without adjusting the model.

2.1.2. Turbine event data
Event data consists of the recorded events experienced by a

wind turbine, e.g. failure, warning, status etc., and the associated
timestamps. These events can be mapped binary into any time
frame matching the SCADA system as seen in Table 1. In order to
give the reader an overview of how many events occur, Fig. 1 in-
dicates, by red markers, all events experienced by the wind tur-
bines, ordered in groups. These events range from scheduled
lubrications, over untwisting cables, to bearing over-temperature.
Remark, on average around 1000 occurrences per year of
different events are under consideration in this study.

As failures of wind turbines develop over time, it is reasonable to
assume that event patterns might be abstracted in order to justify
temporal correlations amongst a turbine's states. Considering a
chain of successive and/or simultaneous events, the dependency
between two sets of events is referred to as event patterns and
Table 1
Binary Event Mapping: Mapping from recorded event data into a binary array for the ev

Please cite this article in press as: J. Herp, et al., Bayesian state predictio
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formulated as

E l0E l0 lsl0
E l;E l04E
E l∩E l0s∅

9=
;; (1)

with support (relative number of a pattern), and confidence

confðE l0E l0 Þ ¼
suppðE l∪E l0 Þ

suppðE lÞ
: (2)

By this approach, normal and critical event patterns of bearing
failure can be abstracted from the turbines under consideration. For
instance, with high confidence, Bearing Over-Temperature warnings
can lead to Bearing Over-Temperature failures.
3. State transition

The state transition algorithm under consideration follows the
work of Herp et al.[ 24, 27] where the joint probability over the
current state can be estimated recursively by

ℙ
�
sðiÞ;x½1;i�

�
¼
X
sði�1Þ

ℙ
�
sðiÞ
���sði�1Þ;x½1;i�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conditinal prior

�ℙ
�
xi
���sði�1Þ;x½1;i�1�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sample model

� ℙ
�
sði�1Þ; x½1;i�1�

�
:

(3)

Eq. (3) is referred to as the Dependent State Transition Model
(DSTM). The DSTM can be easily generalized to higher dimensions
by portraying xi as a vector xi2ℝd and x½1;i� as a matrix of di-
mensions i� d. States are then abstracted by considering the
maximum likelihood of ℙðsðiÞ; x½1;i�Þ. Both the conditional prior and
sample model are implicitly depending on known hyper-
parameters b ¼ ðbc; bmÞ, thus whenever one of them is consid-

ered it is referred to as ℙðsðiÞ
���sði�1Þ; x½1;i�Þ≡ℙðsðiÞ

���sði�1Þ; x½1;i�; bcÞ or

ℙðxi
���sði�1Þ; x½1;i�1�Þ≡ℙðxi

���sði�1Þ; x½1;i�1�; bmÞ.
The probability of undergoing a state transition is based on the
aluation of dependency between events.

n of wind turbine bearing failure, Renewable Energy (2017), http://
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assumption of dependencies between states. Referring to Herp
et al. [24] for the calculation of the DSTM the dependency on x½1;i�
requires taking the previous state information into account. I.e.
utilizing the knowledge of the number of previous state transitions
S , and their location in the sequence of states:
S0 ¼ 0< S1 < S2 <…< SS < i. The estimation of the conditional prior
in Eq. (3), will be based on the temporal distance between the
occurrence of states, DS≡Sm � Sm�1. In other words,
f ðDSÞ ¼ ℙðSm � Sm�1 ¼ DSÞ � fℕ1g, where 1 � m< i. As the event
dependencies do not contain temporal information, the assump-
tion that DS can be treated as an independent variable, with the
joint probability distribution, Eq (4), is implied.

ℙðS1;…; SS Þ ¼
 Y

m¼1

S

f ðDSÞ
!�

1� F
�
sðiÞ
��

; (4)

here F denotes the cumulative distribution of f. When considering
the ith sample, the dataset is divided into S þ 1 sates, with themth

state containing the observations x½Smþ1;Smþ1 �, up tom ¼ S . For each
state there then exists a model specified by its statistical measures.
For all m the probability distribution over sm will depend on the
location of the previous state transition and its length, character-
ized by ðSm�1; SmÞ, and the statistical information in sm�1. Let
ℙðsðiÞ

���sði�1Þ; x½1;i�Þ be equal to H, the probability when undergoing a
state transition, 1� H when staying in the same state, and
0 otherwise. The probability when undergoing a state transition
will be proportional to ℙðsmjsm�1; Sm; Sm�1Þ, and the statistical in-
formation in Sm�1. Remark, in this cases common parameters
across the states are possible. In order to initialize the first state, s0,
the prior for this state needs to be picked beforehand, since no data
are available yet. Finally, the problem is reduced to selecting the
proper set of conjugated priors (as discussed in a wide range of
textbooks such as Gelman et al. [29]) for sm and Sm, that best re-
sembles the data set.

The sample model in Eq. (3) describes the statistical measures of
the different states. The original state transition approach consid-
ered changes in mean and variance to distinguish between states. A
Student's t-distribution can be used for that purpose. Let Stnðm; sÞ
denote the Student's t-distribution with n degrees of freedom,
mean m, and variance s, then

ℙ
�
xi
���sði�1Þ; x½1;i�1�

�
¼ St2a

�
mi;

gi
ai

ki þ 1
ki

�
; (5)

where

mi ¼
k0m0 þ E

h
x½1;i�

i
k0 þ i

; (6a)

ki ¼ k0 þ i; (6b)

ai ¼ a0 þ i; (6c)


x½SS þ1;i�1�

xi

�
¼ N

0
@0;

2
4 s
�
x½SS þ1;i�1�; x½SS þ1;i�1�

�
þ s2

ε
I s

�
x½SS þ1;i�

s
�
x½SS þ1;i�1�;xi

�u
sðxi; xi
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gi ¼ g0 þ
1
2
xi þ

k0i
�
E
h
x½1;i�

i
� m0

�2
2ðk0 þ iÞ ; (6d)

with m0; k0;a0;g0 being the previous statistics, and sum of stand-
ardised squared error

xi ¼
Xi
l¼1

ðxl � E½x�Þ2: (7)

As seen in Section 2.1; time series under consideration might
not show characteristics that can be described by simple changes in
their mean or variance. In contrast to the approach proposed by
Herp et al. [24], this work considers more elaborate models by the
means of Gaussian processes as described in the next section.
3.1. Gaussian process - extensions to the existing model

Gaussian processes have been proven to be useful in machine
learning, a profound description is available in the textbook of
Rasmussen et al. [28]. By definition, a Gaussian process is a
collection of random variables of finite number which have a
Gaussian distribution. The Gaussian process will thus be fully
specified by a mean E½,�2ℝd/ℝ and covariance
sð,; ,Þ2ℝd � ℝd/ℝ function with known hyper-parameters l and
input space dimension d. In this study, the sample model in Eq. (3)
is described by a Gaussian process. Defining the input space as the
space of training sample data, and the feature space as the space of
sample data of the system under study, these spaces might have
different dimensions. Considering u � N ð0;SÞ as weight to the
input, fðiÞ is introduced as the function mapping from the d-
dimensional input space into a finite sized feature space of
dimension D:

f ðiÞ ¼ fðiÞu: (8)

Now f ðiÞ can be specified by the mean and the covariance of the
feature space:

xi ¼ f ðiÞ þ εi; (9a)

fi≡f ðiÞ � G P
�
mf ; sf

�
≡N

�
mf ; sf

�
; εi � N

�
0; Is2

ε

�
; (9b)

where

E½fi� ¼ fðiÞuE½u� ¼: mf ; (10)

E
h
fi; fj
i
¼ fðiÞuE

�
uuu

	
fðjÞ ¼ fðiÞuSfðjÞ ¼: sf : (11)

By construction of Eq. (3) the sample model is only dependent
on the current state, i.e. x½SS þ1;i�1�. In the light of Gaussian process,
the covariance between the predicted sample, i.e. xi, and the cur-
rent state, the prior can be written as:
1�; xi
�

Þ

3
5
1
A: (12)

n of wind turbine bearing failure, Renewable Energy (2017), http://
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From Eq. (12) the sample model in Eq. (3) (in earlier work
described by a Student's t-distribution) gives rise to the following
one step predictive distribution, by simple matrix manipulation
[30]:

ℙ
�
xi
���x½SS þ1;i�1�

�
¼ N ðm; covÞ; (13)

where

m ¼ s
�
x½SS þ1;i�1�;xi

�u
$
�
s
�
x½SS þ1;i�1�; x½SS þ1;i�1�

�
þ s2

ε
I
��1

x½SS þ1;i�1�; (14)

cov ¼ sðxi;xiÞ � s
�
x½SS þ1;i�1�; xi

�u
$
�
s
�
x½SS þ1;i�1�; x½SS þ1;i�1�

�
þ s2

ε
I
��1

$s
�
x½SS þ1;i�1�; xi

�
:

(15)

Consider again the signal plus noise model of the form
xi ¼ f ðiÞ þ εi, remark that the additive noise is assumed to be in-
dependent, identical distributed with variance s2

ε
. The prior on the

noise part can be expressed as sðxi; xjÞ þ s2
ε
I. The joint predictive

distribution for the samples of some prior input x½SS þ1;i�1� and
predictive output xi is specified by the prior.

It is assumed that the hyper-parameter of the sample model,
namely bm, is known and fixed. In the cases of multiple hyper-
parameters g for each state transition, these need to be marginal-
ized out

ℙ
�
xi
���x½SS þ1;i�1�; bm

�
f

Z
ℙ
�
xi
���x½SS þ1;i�1�;g

�
ℙðxijgÞℙðgjbmÞdg;

(16)

with marginal log-likelihood
log ℙ
�
x½SS þ1;i�1�

���g� ¼ �1
2



xu½SS þ1;i�1�$

�
s
�
x½SS þ1;i�1�; x½SS þ1;i�1�

�
þ s2

ε
I
��1

x½SS þ1;i�1� þ log
����s�x½SS þ1;i�1�;x½SS þ1;i�1�

�
þ s2

ε
I

����
þ ðSS þ 1Þlogð2pÞ

�
: (17)
For this study d ¼ 1, unless stated otherwise.
Generating samples using the Gaussian process based sample

model requires the selection of specific structures for m and cov, and
estimating these structures by obtaining the hyper-parameters on a
training data set. While m is assumed to be fixed and zero, and the
prior on the covariance function, cov, is chosen to be a radial basic
function [31] of the form

cov ¼ s
�
xi; xj

 ¼ s2
ε
exp

�
� 1
2
�
xi � xj

u�xj � xi
�

; (18)

generating infinitely differentiable functions.
4. State prediction

Extending the Gaussian process detection of state transitions, as
Please cite this article in press as: J. Herp, et al., Bayesian state predictio
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described in Section 3, into prediction of state transition condi-
tioned on a single event is based on two principles: (i) the common
characteristics across the time series such that one ormore turbines
can be utilized for model building purposes, i.e. to learn of the
underlying hyper-parameters and (ii) that the future samples, xiþDn
can be extrapolated by the Gaussian process as described by Eq.
(12).

(i) The hyper-parameters are obtained by considering one or
more training time series and running the Gaussian process
built around Eq. (3) such that arg maxbfLðℙðsðiÞ

���x½1;N�ÞÞg,
where x½1;N� ¼ ½x½1;i�; x½iþ1;iþDN��. In order to assure model
robustness and prevent over-fitting, the training process can
be done on more than one time series. In that case, multiple
time series are taken as an input to retrieve the hyper-
parameters. The training time series are aligned at the time
of failure and treated as a multivariate input for each xi, i.e.
following the approach outlined in Section 3 with d � 2.
Compared to the previous work on the state abstraction of
wind turbines [24,27], where trainingwas only performed on
a subset of a time series, training on a full time series now
enables the prediction of specific states in other time series.
This is due to the trained model's awareness of the possible
states existence in the future.

(ii) As soon as the hyper-parameters are specified, time series
can be predicted Dn samples into the future. Intuitively
speaking, the prediction can be viewed as the extrapolation
of the samples x½1;i�1� by the functions f ð,Þ selected from the
feature space. For any x½1;i�1� Eq. (12) returns the estimated
xi. Iteratively applying Eq. (12) leads to
x½1;i�; x½1;iþ1�;…; x½1;iþDn�. The hyper-parameters for the sam-
ple model, bm, or equivalently fgg, dictate the properties of
the hidden state variable sm, i.e. DS, the length of a state, and
its location ðSm�1; SmÞ.

Fig. 3 illustrates the prediction of xi for simplified and idealized
simulated bearing temperature residuals with additive noise. The
predictions shown in panels a) - d) are based on Eq. (12), generating
the prediction, shown in gray-scale ( ), based on the previous
samples. Early prior to the buildup in temperature (panel a)), the
prediction indicates no significant change in the upcoming re-
siduals. As time progresses the algorithm picks up the buildup in
temperature, and predicts the rise of the temperature as it looks
further into the future (panel b)). Panel c) shows how the precision
decreases and the predictive distribution hardens around the pre-
dictive values. Finally, as seen in panel d), the turbine undergoes
downtime after a fault occurred, and the temperature falls to
normal levels again.

Being able to predict future samples, the prediction horizon,
accuracy, and precision can be addressed, under the assumption of
monitoring a specific event Ek00 or set of events fEk00 g. As bm, or
equivalently fgg, specify the state transitions, it is possible to

evaluate ℙðDn
���fEk00 g; sðiÞ; x½1;i�Þ. Fig. 4, illustrates that the idealized
n of wind turbine bearing failure, Renewable Energy (2017), http://



Fig. 5. Concept of state, the Gaussian process predictive model and state prediction.
Predicted events based on the event pattern analysis, and cumulative distribution for
observing specific events fEk00 g. Further, the diagonal lines indicate the abstracted
states.

Fig. 3. Concept of state, the Gaussian process predictive model and state prediction.
Snapshots of the predictive model, forecasting samples according to the trained
Gaussian process, with variance indicated in gray-scale ( ).
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distribution ℙðDn
���fEk00 g; sðiÞ; x½1;i�Þwill have an empirical probability

density function (pdfðDnÞ) and cumulative distribution function

(cdfðDnÞ). The maximum likelihood of ℙðDn
���fEk00 g; sðiÞ; x½1;i�Þ defines

the predicted time, tn, of Ek00 . The prediction horizon is defined as
tn � ti, the distance between the current time ti and the most likely
time of the event tn dictated by pdfðDnÞ. The accuracy is defined as

ACC ¼
���tE

k00
� tn

���; (19)

the absolute distance between the real time, tE
k00
, and the predicted
Fig. 4. Idealized Dn-step prediction of an event. Illustrated are the probability density
function and cumulative distribution function from a Gaussian process prediction a
specific event.
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time for the considered event. The precision of predicting tEk is
defined as the symmetric integral over ℙðDn

���fEk00 g; sðiÞ; x½1;i�Þ:

PRC ¼
ZtEk00 þD

tE
k00
�D

pdfðDnÞdt/
XtEk00 þD

tE
k00

�D

ℙ
�
Dn
���Ek00 ; sðiÞ; x½1;i�� (20)

where D indicates the desired precision interval around tE
k00
, as

illustrated by the shaded area in Fig. 4. The probability density
function, pdfðDnÞ, in Fig. 4 is best explained intuitively by consid-
ering a hard temperature threshold. In the case where the
threshold cuts through the shaded area in Fig. 3 it will give raise to a
distinction as shown in Fig. 4.

f,gm;covt is introduced as the short hand notation for the set of
events associated with the mean and variance of the predictive
distribution N ðm; covÞ, as defined by Eqs. (13) - (15). Assuming the
events under consideration, fEk00 g, are fixed, states can be predicted
under the premises of Eq. (1), such that f,gm;covt 0f,gm0 ;cov0

tþDn ex-
presses the patterns of Eq. (1). Continuing the discussion of the
idealized bearing temperature residuals prediction of Figs. 3 and 5
shows the abstracted state events and the prediction, conditioned
on the monitoring of fEk00 g. Each row in Fig. 5 is described sepa-
rately and correspond to the panels a)-d) in Fig. 3:

a) As the predicted samples are a linear extrapolation of the
past interval, the state detection algorithm does not identify
any state transition at any time in the future. This is
expressed in the close to zero cdf(Dn). Further, as m and cov
do not change, the predicted events Dn samples ahead of i
identical to the set of the current events, i.e.
fEkgm;covi 0fEkgm;coviþDn .
n of wind turbine bearing failure, Renewable Energy (2017), http://
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b) As the predicted sample changes, a state transition is
detected. The new prediction generates samples that are
associated with a temperature increase. As such, the cumu-
lative distribution of ℙðDn

���fE00
kg; sðiÞ; x½1;i�Þ starts building up.

The change of the Gaussian process, through m and cov,
identifies the current state as a pre-fault fEkgm

0 ;cov0

i , i.e. a state
prior to a failure, predicting the next state to contain events
associated with the turbine failure, fEkgm

00
;cov00

i . The cumula-
tive distribution indicates when the predictive algorithm
expects the next state transition, tn, associated with
fEkgm

00
;cov00

i . Notice that the previous state does not contribute
to the prediction anymore and is completely specified by m,
cov and fEkg.

c) This row describes the same situation as row b), including
the same event patterns. However, time is progressed and
more samples are available. In the snapshot presented, the
distribution around the predicted values has hardened,
leading to a narrower pdfðDnÞ and a more local cdf(Dn). This
is equal to the state prediction is more certain of predicting a
state transition at a specific location in time. Remark, for the
state prediction approach it cannot be shown that the pre-
diction will converge fully towards the true failure, upon
increasing sample size and decreasing distance to the failure.
This is due to the highly complex data driven nature of the
hyper-parameters involved across the states. The next Sec-
tion will provide the implementation of the proposed
approach on the earlier mentioned residuals.

d) Finally the prediction of a state, subjected to fEkgm
00
;cov00

i , has
converged toward a point in time and a new state transition
is detected. The cumulative distribution at that point be-
comes a step function.

Summarizing the panels a) - d) of Fig. 5, they show the con-
vergences of the state prediction towards the failure under
consideration. Remark, Figs. 3 and 5 are idealized cases for illus-
trational purposes only. The computational effort for estimating the
probability of each possible state is in the order of O ðn2Þ, where n is
the length of the time series.

5. Bearing failure - A case study

The time series described in Section 2.1 will now be under
investigation, by applying the approach laid out in Sections 3 and 4.
Further, following the notation of Section 4, fEk00 g denotes the set of
events which are associated with Bearing Over-Temperature failure,
and f,gm;covt 0f,gm0;cov0

tþDn are the patterns extracted under the pre-
mises of Eq. (1), exceeding the heuristic confidence threshold of
� 0:75. When transitioning into a state associated with bearing
failure, i.e. fEk0 gm

0;cov0
t 0fEk00 gm

00
;cov00

tþDn , the averaged confidence over
all turbines is 0.79. Before evaluating the times series, the state
detection and prediction approach is built on the characteristics of
the remaining times series, in accordance with the assumed simi-
larity presented in Figs. 1 and 2. For the remainder of this section
one time series is under consideration at a time, leaving the other
two time series for the training objective. By permutation of the
training time series, the training input can be of dimension d ¼ 1;2.
For example, evaluating the temperature residuals of Turbine 1, d ¼
1 for training themodel on the residuals of turbine 2 or 3, and d ¼ 2
for the training on both 2 and 3 combined. Further, the latter is
done to investigate the effects of possible over-fitting.

The permutation of training and evaluation time series is shown
in Table 2. Each figure shows the accuracy defined by Eq. (19) (ACC)
where the time of the failure indicated by the red shaded area, and
the precision defined by Eq. (20) (PRC) for selected values of D, as
indicated by the color bar. Remark that the axis for the ACC is
Please cite this article in press as: J. Herp, et al., Bayesian state predictio
dx.doi.org/10.1016/j.renene.2017.02.069
located on the right hand side of the figures. In order to make the
figures of Table 2 more comprehensive, Fig. 6 shows the case of
Turbine 1 trained on Turbine 2. The dash line highlights the time
under consideration, while the current time is approximative 2
month prior the failure, the accuracy is in the order of 4 days. Better
accuracy is achieved as the current time gets closer to the time of
failure. On the other hand, from the intersection of the dashed line
with the PRC curves, the precision spans from 0.5 to 1 for different
values of D. For instance, while only 50% of the predictive density
function for the failure time is within a 6 h interval around the real
failure (PRC ¼ 0:5 for D ¼ 6 hours), the precision for intervals
higher than D ¼ 312 hours is 100%. Like the accuracy, the precision
improves as the current time converges to the time of failure.

Common for all combinations of turbines and training settings is
the trend of the ACC and PRC. The ACC can be separated into two
domains: large values far from the monitored failure, and conver-
gences towards low ACC as the failure is picked up by the state
prediction. However, notice that only in the case of Turbine 1 does
the ACC converge towards zero (full convergence) prior to the fault.
Similar domains can be identified for the PRC. For eachD the time of
convergence is different. As D specifies the time interval around the
failure time, the PRC fully converges when the prediction horizon is
close to true failure and in the same order of magnitude as D. Again,
it is noticed that full convergence is only observed for Turbine 1.
Further, as the time to the failure decreases, the PRC associatedwith
D become denser, i.e. the predictive distribution ℙðDn

���fEk00 g; si; x½1;i�Þ
hardens.

Considering the contribution of each turbine during training, it
appears that either training on Turbine 2 or Turbine 3 results in a
fully convergences of the ACC and PRC for Turbine 1, while it is not
observed the other way around. Especially in the case of Turbine 2 it
appears that only large values of D lead to convergence at all. As the
convergence of all turbines resembles the same trend independent
of the underlying training data, the conclusion implied is that the
rate of convergences is determined by the data under evaluation.
From visual inspection, it appears that when training on Turbine 3
more variance in the PRC can be expected. Notice also that the
charts of Turbine 3 include more variance overall compared to
Turbines 1 and 2. As this is not observed when evaluating Turbine 1
trained on Turbine 2 and vice versa, the increase in variation is
attributed to the hyper-parameters updated on Turbine 3.

Training on multiple turbines will increase the robustness of the
state prediction but not necessarily increase the precision and ac-
curacy. As the training time series may be composed of trends that
are not common for the time series under evaluation, including
multiple time series suppresses local variations that will alter the
outcome of the prediction. This is most clear when evaluating
Turbine 1. As shown in Fig. 1, Turbines 1 and 2 express a dip in the
temperature residuals prior to the fault. These dips are observed
with different intensity and at different times before the failure. In
Table 2 an associated dip is observed in the PRC with different in-
tensity for Turbine 1. However, when combining Turbine 2 and 3
into a training set, the evaluation is more robust against these
changes, as the dip in PRC is removed from the chart.

These considerations point towards a strong model dependency
on the hyper-parameters, attributed to the data driven nature of the
model.

Considering all evaluations subjected to D such that PRC � 0:9,
an average for the prediction horizon, accuracy, and precision is
calculated. The interval around the true occurrence of the fault, as
illustrated by the shaded area in Fig. 4, is Dz126 hours equivalent
to z7 days, with PRC � 0:9, as defined by Eq. (20). The prediction
horizon achieved at that point is z781 hours (z33 days), with
ACCz106 hours (z4 days). In other words, on average, the fault
can be predicted 33 days ahead of its occurrence, with 90% of the
n of wind turbine bearing failure, Renewable Energy (2017), http://



Table 2
Accuracy and confidence of selected precisions D, for Dn-step predictions.

Fig. 6. Close-up of the interval around December 1st, 2013, for the PRC and ACC chart
in the case of Turbine 1 trained on Turbine 2, as illustrated in Table 2.
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predictive distribution ℙðn
���fEk00 g; sðiÞ; x½1;i�Þ being within the interval

½tk00 � D; tk00 þ D�, with D ¼ 7 days.
6. Conclusion

A state prediction approach has been presented based on the
inference of wind turbine bearing temperature residuals and
Gaussian processes. Including event data from the individual tur-
bines, it has been shown that prediction of a selected failure event,
namely Bearing Over-temperature, is possible. Although evaluated
on a limited set of time series, the approach has shown promising
results, with an averaged time of prediction a month before the
actual time of failure with high confidence, and an accuracy and
precision in the order of days and a week, respectively.

For the three time series under consideration, it was noticed
that only one out of three predictions converges to the true time of
n of wind turbine bearing failure, Renewable Energy (2017), http://
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the fault. The others, though close, do not fully converge, with one
even showing lower confidence on the partial convergence.
Without including more time series, it is not possible to draw
certain conclusions. However, it is believed that the discrepancy in
the performance can be attributed to the strong data driven nature
of the model and the underlying training data. The need to specify
the hyper-parameters across all possible states, while training, is a
task that requires numerical solutions for the global extrema of
highly non-convex cost functions. As such, the calculations become
more time consuming when searching for the true optimum, so the
model construction becomes a trade-off between computational
efficiency and overall model performance.

Exploring the ability of Bayesian inference to abstract and pre-
dict wind turbine states conditioned on specific events in more
general cases, e.g. using multiple sensors inputs rather than re-
siduals, is a great opportunity for further research.
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