14 research outputs found

    Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols

    Get PDF
    Amino-terminally truncated parathyroid hormone (PTH) fragments are detected to differing degrees by first- and second-generation immunometric PTH assays (PTH-IMAs), and acute changes in serum calcium affect the proportion of these fragments in circulation. However, the effect of chronic calcium changes and different vitamin D doses on these PTH measurements remains to be defined. In this study, 60 pediatric dialysis patients, aged 13.9 ± 0.7 years, with secondary hyperparathyroidism were randomized to 8 months of therapy with oral vitamin D combined with either calcium carbonate (CaCO3) or sevelamer. Serum phosphorus levels did not differ between groups. Serum calcium levels rose from 9.3 ± 0.1 to 9.7 ± 0.1 mg/dl during CaCO3 therapy (p < 0.01 from baseline) but remained unchanged during sevelamer therapy. In the CaCO3 and sevelamer groups, baseline serum PTH levels (1st PTH-IMA; Nichols Institute Diagnostics, San Clemente, CA) were 964 ± 75 and 932 ± 89 pg/ml, and levels declined to 491 ± 55 and 543 ± 59 pg/ml, respectively (nonsignificant between groups). Patients treated with sevelamer received higher doses of vitamin D than those treated with CaCO3. The PTH values obtained by first- and second-generation PTH-IMAs correlated closely throughout therapy and the response of PTH was similar to both PTH-IMAs, despite differences in serum calcium levels

    Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement

    Get PDF
    This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders

    Paternal Uniparental Isodisomy of Chromosome 20q—and the Resulting Changes in GNAS1 Methylation—as a Plausible Cause of Pseudohypoparathyroidism

    Get PDF
    Heterozygous inactivating mutations in the GNAS1 exons (20q13.3) that encode the α-subunit of the stimulatory G protein (Gsα) are found in patients with pseudohypoparathyroidism type Ia (PHP-Ia) and in patients with pseudo-pseudohypoparathyroidism (pPHP). However, because of paternal imprinting, resistance to parathyroid hormone (PTH)—and, sometimes, to other hormones that require Gsα signaling—develops only if the defect is inherited from a female carrier of the disease gene. An identical mode of inheritance is observed in kindreds with pseudohypoparathyroidism type Ib (PHP-Ib), which is most likely caused by mutations in regulatory regions of the maternal GNAS1 gene that are predicted to interfere with the parent-specific methylation of this gene. We report a patient with PTH-resistant hypocalcemia and hyperphosphatemia but without evidence for Albright hereditary osteodystrophy who has paternal uniparental isodisomy of chromosome 20q and lacks the maternal-specific methylation pattern within GNAS1. Since studies in the patient’s fibroblasts did not reveal any evidence of impaired Gsα protein or activity, it appears that the loss of the maternal GNAS1 gene and the resulting epigenetic changes alone can lead to PTH resistance in the proximal renal tubules and thus lead to impaired regulation of mineral-ion homeostasis

    Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS

    Get PDF
    Patients with pseudohypoparathyroidism type Ib (PHP-Ib) have hypocalcemia and hyperphosphatemia due to renal parathyroid hormone (PTH) resistance, but lack physical features of Albright hereditary osteodystrophy. PHP-Ib is thus distinct from PHP-Ia, which is caused by mutations in the GNAS exons encoding the G protein α subunit. However, an imprinted autosomal dominant form of PHP-Ib (AD-PHP-Ib) has been mapped to a region of chromosome 20q13.3 containing GNAS. Furthermore, loss of methylation at a differentially methylated region (DMR) of this locus, exon A/B, has been observed thus far in all investigated sporadic PHP-Ib cases and the affected members of multiple AD-PHP-Ib kindreds. We now report that affected members and obligate gene carriers of 12 unrelated AD-PHP-Ib kindreds and four apparently sporadic PHP-Ib patients, but not healthy controls, have a heterozygous approximately 3-kb microdeletion located approximately 220 kb centromeric of GNAS exon A/B. The deleted region, which is flanked by two direct repeats, includes three exons of STX16, the gene encoding syntaxin-16, for which no evidence of imprinting could be found. Affected individuals carrying the microdeletion show loss of exon A/B methylation but no epigenetic abnormalities at other GNAS DMRs. We therefore postulate that this microdeletion disrupts a putative cis-acting element required for methylation at exon A/B, and that this genetic defect underlies the renal PTH resistance in AD-PHP-Ib

    DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis.

    No full text
    Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression. &copy; 2006 Nature Publishing Group
    corecore