12 research outputs found

    Increased collagen within the transverse tubules in human heart failure.

    No full text
    Published onlineJournal ArticleThis is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this record.Aims: In heart failure transverse-tubule (t-tubule) remodelling disrupts calcium release, and contraction. T-tubules in human failing hearts exhibit increased labelling by wheat germ agglutinin (WGA), a lectin that binds to the dystrophin-associated glycoprotein complex. We hypothesized changes in this complex may explain the increased WGA labelling and contribute to t-tubule remodelling in the failing human heart. In this study we sought to identify the molecules responsible for this increased WGA labelling. Methods and results: Confocal and super-resolution fluorescence microscopy and proteomic analyses were used to quantify left ventricle samples from healthy donors and patients with idiopathic dilated cardiomyopathy (IDCM). Confocal microscopy demonstrated both WGA and dystrophin were located at t-tubules. Super-resolution microscopy revealed that WGA labelling of t-tubules is largely located within the lumen while dystrophin was restricted to near the sarcolemma. Western blots probed with WGA reveal a 5.7-fold increase in a 140 kDa band in IDCM. Mass spectrometry identified this band as type VI collagen (Col-VI) comprised of α1(VI), α2(VI), and α3(VI) chains. Pertinently, mutations in Col-VI cause muscular dystrophy. Western blotting identified a 2.4-fold increased expression and 3.2-fold increased WGA binding of Col-VI in IDCM. Confocal images showed that Col-VI is located in the t-tubules and that their diameter increased in the IDCM samples. Super-resolution imaging revealed Col-VI was restricted to the t-tubule lumen where increases were associated with displacement in the sarcolemma as identified from dystrophin labelling. Samples were also labelled for type I, III, and IV collagen. Both confocal and super-resolution imaging identified that these collagens were also present within t-tubule lumen. Conclusion: Increased expression and labelling of collagen in IDCM samples indicates fibrosis may contribute to t-tubule remodelling in human heart failure.Research funding was provided by the Auckland Medical Research Foundation (grant 1111009 to DC) and the Health Research Council of New Zealand (grant 12/240 to CS)

    Multiomics, virtual reality and artificial intelligence in heart failure

    Full text link
    Aim: Multiomics delivers more biological insight than targeted investigations. We applied multiomics to patients with heart failure (HF) and reduced ejection fraction (HFrEF), with machine learning applied to advanced ECG (AECG) and echocardiography artificial intelligence (Echo AI). Patients &amp; methods: In total, 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography–mass spectrometry and solid-phase microextraction volatilomics in plasma and urine. HFrEF was defined using left ventricular (LV) global longitudinal strain, EF and N-terminal pro hormone BNP. AECG and Echo AI were performed over 5 min, with a subset of patients undergoing a virtual reality mental stress test. Results: A-ECG had similar diagnostic accuracy as N-terminal pro hormone BNP for HFrEF (area under the curve = 0.95, 95% CI: 0.85–0.99), and correlated with global longitudinal strain (r = -0.77, p &lt; 0.0001), while Echo AI-generated measurements correlated well with manually measured LV end diastolic volume r = 0.77, LV end systolic volume r = 0.8, LVEF r = 0.71, indexed left atrium volume r = 0.71 and indexed LV mass r = 0.6, p &lt; 0.005. AI-LVEF and other HFrEF biomarkers had a similar discrimination for HFrEF (area under the curve AI-LVEF = 0.88; 95% CI: -0.03 to 0.15; p = 0.19). Virtual reality mental stress test elicited arrhythmic biomarkers on AECG and indicated blunted autonomic responsiveness (alpha 2 of RR interval variability, p = 1 × 10-4) in HFrEF. Conclusion: Multiomics-related machine learning shows promise for the assessment of HF. </jats:p

    Antiviral Guanosine Analogs as Substrates for Deoxyguanosine Kinase: Implications for Chemotherapy

    No full text
    A highly active form of human recombinant deoxyguanosine kinase (dGK) phosphorylated purine nucleoside analogs active against cytomegalovirus, hepatitis B virus, and human immunodeficiency virus, such as penciclovir, 2′,3′-dideoxyguanosine and 3′-fluoro-2′,3′-dideoxyguanosine. The antiherpesvirus drug ganciclovir, which is also used in gene therapy, was a substrate for dGK, but with low efficiency. ATP and UTP were both good phosphate donors, with apparent K(m) values of 6 and 4 μM and V(max) values of 34 and 90 nmol of dGMP/mg of dGK/min, respectively. With a mixture of 5 mM ATP and 0.05 mM UTP, which represent physiologically relevant concentrations, the activities of dGK with ganciclovir and penciclovir was 1% and approximately 10%, respectively, of that with dGuo. The levels of dGK in different tissues were determined with a selective enzyme assay and the total activities per gram of tissues were similar in liver, brain, heart, and thymus extracts. The fact that the cellular dGK enzyme can phosphorylate antiviral guanosine analogs may help to explain the efficacies and side effects of several forms of chemotherapy

    Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin?

    No full text
    Medulloblastoma (MB) is the most common brain malignancy in children. Whole neural axis irradiation is the treatment of choice, but it often results in long-term neurocognitive and developmental impairment. Only insights into MB biology will lead to improved therapeutic outcome. Wingless (WNT) signalling deregulation occurs in up to 25% of sporadic tumors, but the specific role of nuclear beta-catenin and its involvement in the radioresponse remains unsettled. Therefore we studied the gamma-radiation response of two MB cell lines from cellular and molecular points of view. Our data show that the p53 wild-type cell line is more sensitive to ionizing radiations (IR) than the p53 mutated line, but apoptosis is also induced in p53-mutated cells, suggesting an alternative p53-independent mechanism. In addition, this study is the first to demonstrate that gamma-rays trigger the WNT system in our in vitro models. Further studies are required to test if this could explain the radiosensitivity of MB and the favorable prognostic value of nuclear beta-catenin in this tumor
    corecore