36 research outputs found

    Analysis of the FLVR motif of SHIP1 and its importance for the protein stability of SH2 containing signaling proteins

    Get PDF
    Under embargo until: 2020-08-02Binding of proteins with SH2 domains to tyrosine-phosphorylated signaling proteins is a key mechanism for transmission of biological signals within the cell. Characterization of dysregulated proteins in cell signaling pathways is important for the development of therapeutic approaches. The AKT pathway is a frequently upregulated pathway in most cancer cells and the SH2-containing inositol 5-phosphatase SHIP1 is a negative regulator of the AKT pathway. In this study we investigated different mutations of the conserved FLVR motif of the SH2 domain and putative phosphorylation sites of SHIP1 which are located in close proximity to its FLVR motif. We demonstrate that patient-derived SHIP1-FLVR motif mutations e.g. F28L, and L29F possess reduced protein expression and increased phospho-AKT-S473 levels in comparison to SHIP1 wildtype. The estimated half-life of SHIP1-F28L protein was reduced from 23.2 h to 0.89 h in TF-1 cells and from 4.7 h to 0.6 h in Jurkat cells. These data indicate that the phenylalanine residue at position 28 of SHIP1 is important for its stability. Replacement of F28 with other aromatic residues like tyrosine and tryptophan preserves protein stability while replacement with non-aromatic amino acids like leucine, isoleucine, valine or alanine severely affects the stability of SHIP1. In consequence, a SHIP1-mutant with an aromatic amino acid at position 28 i.e. F28W can rescue the inhibitory function of wild type SHIP1, whereas SHIP1-mutants with non-aromatic amino acids i.e. F28V do not inhibit cell growth anymore. A detailed structural analysis revealed that F28 forms hydrophobic surface contacts in particular with W5, I83, L97 and P100 which can be maintained by tyrosine and tryptophan residues, but not by non-aromatic residues at position 28. In line with this model of mutation-induced instability of SHIP1-F28L, treatment of cells with proteasomal inhibitor MG132 was able to rescue expression of SHIP1-F28L. In addition, mutation of putative phosphorylation sites S27 and S33 adjacent to the FLVR motif of SHIP1 have an influence on its protein stability. These results further support a functional role of SHIP1 as tumor suppressor protein and indicate a regulation of protein expression of SH2 domain containing proteins via the FLVR motif.acceptedVersio

    Analysis of the FLVR motif of SHIP1 and its importance for the protein stability of SH2 containing signaling proteins

    Get PDF
    Under embargo until: 2020-08-02Binding of proteins with SH2 domains to tyrosine-phosphorylated signaling proteins is a key mechanism for transmission of biological signals within the cell. Characterization of dysregulated proteins in cell signaling pathways is important for the development of therapeutic approaches. The AKT pathway is a frequently upregulated pathway in most cancer cells and the SH2-containing inositol 5-phosphatase SHIP1 is a negative regulator of the AKT pathway. In this study we investigated different mutations of the conserved FLVR motif of the SH2 domain and putative phosphorylation sites of SHIP1 which are located in close proximity to its FLVR motif. We demonstrate that patient-derived SHIP1-FLVR motif mutations e.g. F28L, and L29F possess reduced protein expression and increased phospho-AKT-S473 levels in comparison to SHIP1 wildtype. The estimated half-life of SHIP1-F28L protein was reduced from 23.2 h to 0.89 h in TF-1 cells and from 4.7 h to 0.6 h in Jurkat cells. These data indicate that the phenylalanine residue at position 28 of SHIP1 is important for its stability. Replacement of F28 with other aromatic residues like tyrosine and tryptophan preserves protein stability while replacement with non-aromatic amino acids like leucine, isoleucine, valine or alanine severely affects the stability of SHIP1. In consequence, a SHIP1-mutant with an aromatic amino acid at position 28 i.e. F28W can rescue the inhibitory function of wild type SHIP1, whereas SHIP1-mutants with non-aromatic amino acids i.e. F28V do not inhibit cell growth anymore. A detailed structural analysis revealed that F28 forms hydrophobic surface contacts in particular with W5, I83, L97 and P100 which can be maintained by tyrosine and tryptophan residues, but not by non-aromatic residues at position 28. In line with this model of mutation-induced instability of SHIP1-F28L, treatment of cells with proteasomal inhibitor MG132 was able to rescue expression of SHIP1-F28L. In addition, mutation of putative phosphorylation sites S27 and S33 adjacent to the FLVR motif of SHIP1 have an influence on its protein stability. These results further support a functional role of SHIP1 as tumor suppressor protein and indicate a regulation of protein expression of SH2 domain containing proteins via the FLVR motif.acceptedVersio

    Impact of AKT1 on cell invasion and radiosensitivity in a triple negative breast cancer cell line developing brain metastasis

    Get PDF
    Introduction: The PI3K/AKT pathway is activated in 43-70% of breast cancer (BC)-patients and promotes the metastatic potential of BC cells by increasing cell proliferation, invasion and radioresistance. Therefore, AKT1-inhibition in combination with radiotherapy might be an effective treatment option for triple-negative breast cancer (TNBC)-patients with brain metastases. Methods: The impact of AKT1-knockout (AKT1_KO) and AKT-inhibition using Ipatasertib on MDA-MB-231 BR cells was assessed using in vitro cell proliferation and migration assays. AKT1-knockout in MDA-MB-231BR cells was performed using CRISPR/Cas9. The effect of AKT1-knockout on radiosensitivity of MDA-MB-231BR cell lines was determined via colony formation assays after cell irradiation. To detect genomic variants in AKT1_KO MDA-MB-231BR cells, whole-genome sequencing (WGS) was performed. Results: Pharmacological inhibition of AKT with the pan-AKT inhibitor Ipatasertib led to a significant reduction of cell viability but did not impact cell migration. Moreover, only MDA-MB-231BR cells were sensitized following Ipatasertib-treatment. Furthermore, specific AKT1-knockout in MDA-MB-231BR showed reduced cell viability in comparison to control cells, with significant effect in one of two analyzed clones. Unexpectedly, AKT1 knockout led to increased cell migration and clonogenic potential in both AKT1_KO clones. RNAseq-analysis revealed the deregulation of CTSO, CYBB, GPR68, CEBPA, ID1, ID4, METTL15, PBX1 and PTGFRN leading to the increased cell migration, higher clonogenic survival and decreased radiosensitivity as a consequence of the AKT1 knockout in MDA-MB-231BR. Discussion; Collectively, our results demonstrate that Ipatasertib leads to radiosensitization and reduced cell proliferation of MDA-MB-231BR. AKT1-inhibition showed altered gene expression profile leading to modified cell migration, clonogenic survival and radioresistance in MDA-MB-231BR. We conclude, that AKT1-inhibition in combination with radiotherapy contribute to novel treatment strategies for breast cancer brain metastases

    Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia.

    Get PDF
    Current therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the suppression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyperactivation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase SH2-containing-inositol-5'-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to increased mitochondrial respiration and causes excessive accumulation of reactive oxygen species (ROS), resulting in cell death in CLL with immunogenic features. Our results demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity, allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy

    The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism

    No full text
    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Metabolic reprogramming is considered a new hallmark of cancer, but it remains unclearly described in HCC. The dysregulation of the PI3K/AKT/mTOR signaling pathway is common in HCC and is, therefore, a topic of further research and the concern of developing a novel target for liver cancer therapy. In this review, we illustrate mechanisms by which this signaling network is accountable for regulating HCC cellular metabolism, including glucose metabolism, lipid metabolism, amino acid metabolism, pyrimidine metabolism, and oxidative metabolism, and summarize the ongoing clinical trials based on the inhibition of the PI3K/AKT/mTOR pathway in HCC

    Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells

    No full text
    Abstract Background Due to the frequent dysregulation of the PI3K/AKT/mTOR signaling pathway, mTOR represents a suitable therapeutic target in hepatocellular carcinoma (HCC). However, emerging data from clinical trials of HCC patients indicate that mTOR inhibition by RAD001 (Everolimus) alone has only moderate antitumor efficacy which may be due to the feedback activation of AKT after mTOR inhibition. In this study, we analyzed the effects of dual inhibition of mTOR and AKT on the proliferation of HCC cell lines. In addition, we measured the feedback activation of each of the AKT isoforms after mTOR inhibition in HCC cell lines and their enzymatic activity in primary samples from HCC patients. Methods The activation status of specific AKT isoforms in human HCC samples and corresponding healthy liver tissue was analyzed using an AKT isoform specific in vitro kinase assay. AKT isoform activation after mTOR inhibition was analyzed in three HCC cell lines (Hep3B, HepG2 and Huh7), and the impact of AKT signaling on proliferation after mTOR inhibition was investigated using the novel AKT inhibitor MK-2206 and AKT isoform specific knockdown cells. Results AKT isoforms become differentially activated during feedback activation following RAD001 treatment. The combination of mTOR inhibition and AKT isoform knockdown showed only a weak synergistic effect on proliferation of HCC cell lines. However, the combinatorial treatment with RAD001 and the pan AKT inhibitor MK-2206 resulted in a strong synergism, both in vitro and in vivo. Moreover, by analyzing primary HCC tissue samples we were able to demonstrate that a hotspot mutation (H1047R) of PI3KCA, the gene encoding the catalytic subunit of PI3K, was associated with increased in vitro kinase activity of all AKT isoforms in comparison to healthy liver tissue of the patient. Conclusion Our results demonstrate that dual targeting of mTOR and AKT by use of RAD001 and the pan AKT inhibitor MK-2206 does effectively inhibit proliferation of HCC cell lines. These data suggest that combined treatment with RAD001 and MK-2206 may be a promising therapy approach in the treatment of hepatocellular carcinoma.</p

    H2S preconditioning of human adipose tissue-derived stem cells increases their efficacy in an in vitro model of cell therapy for simulated ischemia

    No full text
    Aims: A major limitation of cell-based therapies for ischemia – reperfusion injury is the excessive loss of adminis- tered cells. We investigated whether H 2 S can improve the survival and ef fi cacy of therapeutic cells in an in vitro model of cell-based therapy for simulated ischemia. Main methods: H9c2 rat cardiomyoblasts were exposed to oxygen – glucose deprivation and NaHS (3 – 30 μ M) pretreated human adipose tissue derived stem cells (hASCs) were added after reoxygenization. Viability of both cell lines was assessed with fl ow cytometry after 24 h. The effects of H 2 S on antioxidant defense, prolifera- tion, AKT and ERK1/2 phosphorylation and mitochondrial activity were analyzed in hASCs. Proliferation was evaluated using propargylglycine, an inhibitor of endogenous H 2 S synthesis. Key fi ndings: NaHS pretreatment decreased the ratio of necrotic therapeutic cells by 41.8% in case of 3 μ M NaHS and by 34.3% with 30 μ M NaHS. The ratio of necrotic postischemic cardiomyocytes decreased by 35%, but only with the use of 3 μ M NaHS. Antioxidant defense mechanisms and ERK-phosphorylation were enhanced after 3 μ M NaHS treatment while AKT-phosphorylation was suppressed. NaHS dose-dependently increased the prolif- eration of hASCs while pretreatment with propargylglycine decreased it. Signi fi cance: NaHS pretreatment can increase the survival of therapeutically used human adipose tissue-derived stemcells viaincreased antioxidant defense andimproves the postischemic cardiac derived cells' survival aswell. Proliferation ofhuman adiposetissue-derivedstemcells is enhanced by H 2 S.The underlying mechanisms involve enhanced ERK-phosphorylation and decreased AKT-phosphorylation. Pretreatment with NaHS may represent a simple pharmacological step that may enhance the ef fi cacy of cell-based therapies
    corecore