55 research outputs found

    Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hemibiotrophic fungus <it>Moniliophthora perniciosa </it>is the causal agent of Witches' broom, a disease of <it>Theobroma cacao</it>. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease.</p> <p>Results</p> <p>Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order <it>Agaricales</it>. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage <it>of M. perniciosa</it>, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus.</p> <p>Conclusion</p> <p>The identification of genes with increased expression in this phase of the life cycle of <it>M. perniciosa </it>opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both <it>in vivo </it>and <it>in vitro </it>of <it>M. perniciosa </it>basidiomata and the first description of genes expressed at this stage of the fungal life cycle.</p

    Embriogênese somática e regeneração in vitro de clones elite de Theobroma cacao

    Get PDF
    The objective of this work was to evaluated a procedure for somatic embryogenesis and regeneration of cacao (Theobroma cacao L.) elite clones. Petal explants from cacao clones TSH 565 and TSH 1188 were cultured on PCG and SCG-2 media, for calli growth. Somatic embryos were formed on the surface of embryogenic calli after transfer to embryo development (ED) medium. Clone TSH 565 showed a higher embryogenic potential than TSH 1188. The best combination of carbon source for embryo induction in ED medium was genotype-specifi c. Embryogenic callus formations increased in micropore tape-sealed Petri dishes, irrespective of cacao genotype. Mature somatic embryos were successfully converted into plantlets.O objetivo deste trabalho foi avaliar um procedimento para embriogênese somática e regeneração de clones elite de cacau. Pétalas dos clones de cacau TSH 565 e TSH 1188 foram cultivadas em meios PCG e SCG-2para o crescimento de calos. Embriões somáticos desenvolveram-se na superfície dos calos embriogênicos, após a transferência para o meio ED. O clone TSH 565 apresentou maior potencial embriogênico do que oTSH 1188. A melhor combinação de fonte de carbono quanto à indução de embriões em meio ED foi específi ca do genótipo. A formação de calos embriogênicos foi superior em placas de Petri seladas com fi ta hipoalergênica,independentemente do genótipo. Embriões maduros de ambos os genótipos foram convertidos em plântulas

    Purification, characterization and structural determination of UDP-N-acetylglucosamine pyrophosphorylase produced by Moniliophthora perniciosa

    Get PDF
    The enzyme UDP-N-acetylglucosamine pyrophosphorylase (PyroMp) from Moniliophthora perniciosa (CCMB 0257), a pathogenic fungal strain and the causative agent of the witches' broom disease in Theobroma cacao, was partially purified by precipitation with ammonium sulfate and gel filtration on Sephacryl S-200. The buffer for enzyme extraction was sodium phosphate, 0.050 mol L-1, pH 7.0, containing 1.0 mol L-1 NaCl. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes (PyroMp I, PyroMp II, PyroMp III and PyroMp IV) were obtained with optimal pH ranging from 6.9-8.4 and optimum temperature ranging from 28 to 68 °C. The 3D structure of pyrophosphorylase of M. perniciosa was determined by comparative modeling. The model obtained showed a good quality, possessing 78.6% of amino acids in energetically allowed regions. The model was then submitted for DM simulation and showed a good geometric quality (91.1% Ramachandran plot). The active site of the enzyme was found to be extremely well conserved. This model will be useful for developing new inhibitors against witches' broom disease.A enzima UDP-N-acetilglicosamina pirofosforilase de Moniliophthora perniciosa (CCMB 0257), o fungo patogênico causador da doença vassoura-de-bruxa do Theobroma cacao, foi parcialmente purificada por precipitação com sulfato de amônio e cromatografia de gel filtração em Sephacryl S-200. O tampão de extração da enzima foi o fosfato de sódio, 0,050 mol L-1, pH 7,0, contendo 1,0 mol L-1 de NaCl. A metodologia de superfície de resposta (MSR) foi usada para a obtenção do pH e temperatura ótima. Os resultados mostraram quatro diferentes isoenzimas (PyroMp I, PyroMp II, PyroMp III e PyroMp IV) que apresentaram pH ótimo na faixa de 6,9-8,4 e temperatura ótima variando entre 28 a 68 °C. A estrutura 3D de pirofosforilase de M. perniciosa foi obtida por modelagem comparativa. O modelo obtido mostrou uma boa qualidade, possuindo 78,6% de aminoácidos nas regiões energeticamente favoráveis. O modelo foi então submetido a simulações de dinâmica molecular (DM). O modelo apresentou uma boa qualidade geométrica após as simulações de DM (91,1% -gráfico de Ramachandran). A procura pelo sítio ativo da enzima mostrou que este é mantido extremamente conservado. Este modelo pode ser útil para desenvolvimento de inibidores contra a doença vassoura de bruxa.FINEPCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CNPqFAPESBFIOCRUZ - Programa de Pós-Graduação em Biotecnologia UEF

    Purification, characterization and structural determination of chitinases produced by Moniliophthora perniciosa

    Get PDF
    The enzyme chitinase from Moniliophthora perniciosa the causative agent of the witches' broom disease in Theobroma cacao, was partially purified with ammonium sulfate and filtration by Sephacryl S-200 using sodium phosphate as an extraction buffer. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes were obtained: ChitMp I, ChitMp II, ChitMp III and ChitMp IV. ChitMp I had an optimum temperature at 44-73ºC and an optimum pH at 7.0-8.4. ChitMp II had an optimum temperature at 45-73ºC and an optimum pH at 7.0-8.4. ChitMp III had an optimum temperature at 54-67ºC and an optimum pH at 7.3-8.8. ChitMp IV had an optimum temperature at 60ºC and an optimum pH at 7.0. For the computational biology, the primary sequence was determined in silico from the database of the Genome/Proteome Project of M. perniciosa, yielding a sequence with 564 bp and 188 amino acids that was used for the three-dimensional design in a comparative modeling methodology. The generated models were submitted to validation using Procheck 3.0 and ANOLEA. The model proposed for the chitinase was subjected to a dynamic analysis over a 1 ns interval, resulting in a model with 91.7% of the residues occupying favorable places on the Ramachandran plot and an RMS of 2.68
    corecore