4 research outputs found

    A probabilistic geologic model of the Krafla geothermal system constrained by gravimetric data

    Get PDF
    Publisher's version (útgefin grein).The quantitative connections between subsurface geologic structure and measured geophysical data allow 3D geologic models to be tested against measurements and geophysical anomalies to be interpreted in terms of geologic structure. Using a Bayesian framework, geophysical inversions are constrained by prior information in the form of a reference geologic model and probability density functions (pdfs) describing petrophysical properties of the different lithologic units. However, it is challenging to select the probabilistic weights and the structure of the prior model in such a way that the inversion process retains relevant geologic insights from the prior while also exploring the full range of plausible subsurface models. In this study, we investigate how the uncertainty of the prior (expressed using probabilistic constraints on commonality and shape) controls the inferred lithologic and mass density structure obtained by probabilistic inversion of gravimetric data measured at the Krafla geothermal system. We combine a reference prior geologic model with statistics for rock properties (grain density and porosity) in a Bayesian inference framework implemented in the GeoModeller software package. Posterior probability distributions for the inferred lithologic structure, mass density distribution, and uncertainty quantification metrics depend on the assumed geologic constraints and measurement error. As the uncertainty of the reference prior geologic model increases, the posterior lithologic structure deviates from the reference prior model in areas where it may be most likely to be inconsistent with the observed gravity data and may need to be revised. In Krafla, the strength of the gravity field reflects variations in the thickness of hyaloclastite and the depth to high-density basement intrusions. Moreover, the posterior results suggest that a WNW–ESE-oriented gravity low that transects the caldera may be associated with a zone of low hyaloclastite density. This study underscores the importance of reliable prior constraints on lithologic structure and rock properties during Bayesian geophysical inversion.Icelandic Centre for Research. This study was funded by Technical Development Fund of the Research Center of Iceland (RANNÍS—Grant Number 175193-0612 Data Fusion for Geothermal Reservoir Characterization).Peer Reviewe

    Sub-surface geology and velocity structure of the Krafla high temperature geothermal field, Iceland : Integrated ditch cuttings, wireline and zero offset vertical seismic profile analysis

    Get PDF
    The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE). The VMAPP project run by VBPR, DougalEARTH Ltd. and TGS also contributed funding to the borehole characterization of the K-18 borehole. Landsvirkun is acknowledged for their effort and assistance in this work and in particular for allowing the use of the data from well K-18. We further acknowledge the support from the Research Council of Norway through its Centres of Excellence funding scheme, project 22372 (SP and DAJ).Peer reviewedPostprin

    Hybrid Microgravity Monitoring of the Theistareykir Geothermal Reservoir (North Iceland)

    No full text
    International audienceThe Theistareykir geothermal field is located in North Iceland on the Mid-Atlantic ridge. A power plant produces 90 MWe using two 45 MWe turbines in operation since autumn 2017 and spring 2018, respectively. We performed hybrid microgravity measurements from 2017 to 2019 to monitor the short-term mass redistribution induced by geothermal production. Time-lapse microgravity surveys conducted each summer with a Scintrex CG5 gravimeter reveal the spatial gravity variations with respect to a reference, where the temporal gravity changes are monitored by absolute gravity measurements done with FG5#206 from Micro-g Solutions. In parallel, continuous gravity changes are recorded by a network of several GWR Instruments iGrav superconducting gravimeters and spring gravimeter, located in the injection and production areas. A height correction is applied to the gravity data using InSAR and GNSS measurements. We notice a regular residual gravity decrease in the production area versus a stable behaviour in the injection area. Time-lapse gravity measurements reveal a minimum residual decrease of − 38 ± 10 µGal (1 µGal = 10-8 m s−2) in 2019 with respect to 2017. Simplistic forward modelling of the produced geothermal fluid using a multiple Mogi sphere model can partly explain the residual gravity decrease. This suggest that a significant part of the injected geothermal fluid flows away, maybe drained by the Tjarnarás fault to the South where an increase of the water table level is observed. However, further modelling work is needed to confirm this
    corecore