8,914 research outputs found
Nitrate leaching and spring wheat bread making quality following cultivation of grasslands of different composition, age and management
The influence of sward botanical composition and ley age on grassland residual effects, quality of spring wheat and subsequent nitrate leaching was investigated. Grazed grasslands of different age (1, 2 and 8 production years) and composition (unfertilised grass-clover and fertilised perennial ryegrass) were ploughed and followed by spring wheat and spring barley. For reference, an adjacent field without grassland history but with the same crop sequence in 2002-2003 was treated with increasing quantities of N fertiliser. Yields and N uptake of spring wheat following grasslands always exceeded those of the reference plots with a history of cereal production. The nitrogen fertiliser replacement values of grass-clover and ryegrass were 59-100 and 72-121 kg ha-1, respectively, with the highest values representing the 8-year-old leys. Grain yield and N uptake increased while those for straw decreased with increasing ley age. There were no effects of previous grassland type (grass-clover/ryegrass) on content of protein, starch and gluten, but grassland age significantly influenced protein (P<0.05) and gluten (P<0.01) contents. It is suggested that N mineralisation following the ploughing of older grass leys occurred later than when following the 1st year ley. The protein and gluten contents of wheat following unfertilised grass-clover corresponded to those following cereals given 125-150 kg N ha-1, but the rheological properties of the gluten were different to what could be achieved using equivalent quantities of mineral fertiliser. Probably, the slow release of N from decomposition of old grassland gave a better synchrony between N release and plant demand. Nitrate leaching in year 1 after ploughing was significantly influenced by type of grassland (P<0.001) with 10 and 29 kg N ha-1 leached from grass-clover and ryegrass, respectively. Nitrate leaching following ploughing of 1-year-old leys averaged 11 kg N ha-1 which was significantly lower than the 24 kg N ha-1 following 2 or 8-year-old leys. The flow-weighted mean nitrate concentration decreased from 8.5 mg N l-1 in year 1 after grassland cultivation to 4.5 mg N l-1 in year 2. More N was released following ploughing of ryegrass swards and from grasslands of increasing age, but differences were moderate compared to the estimated N-surplus. This indicates that when organic matter in grasslands is partially decomposed and readily mineralisable N used, the remaining organic N is released only very slowly
Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422
It remains a key challenge to establish the molecular content of different
components of low-mass protostars, like their envelopes and disks, and how this
depends on the evolutionary stage and/or environment of the young stars.
Observations at submillimeter wavelengths provide a direct possibility to study
the chemical composition of low-mass protostars through transitions probing
temperatures up to a few hundred K in the gas surrounding these sources. This
paper presents a large molecular line survey of the deeply embedded
protostellar binary IRAS 16293-2422 from the Submillimeter Array (SMA) -
including images of individual lines down to approximately 1.5-3" (190-380 AU)
resolution. More than 500 individual transitions are identified related to 54
molecular species (including isotopologues) probing temperatures up to about
550 K. Strong chemical differences are found between the two components in the
protostellar system with a separation between, in particular, the sulfur- and
nitrogen-bearing species and oxygen-bearing complex organics. The action of
protostellar outflow on the ambient envelope material is seen in images of CO
and SiO and appear to influence a number of other species, including
(deuterated) water, HDO. The effects of cold gas-phase chemistry is directly
imaged through maps of CO, N2D+ and DCO+, showing enhancements of first DCO+
and subsequently N2D+ in the outer envelope where CO freezes-out on dust
grains.Comment: Accepted for publication in A&A, 30 pages, 22 figure
Thermophilic Sulfate Reduction in Hydrothermal Sediment of Lake Tanganyika, East Africa
In environments with temperatures above 60 degrees C, thermophilic prokaryotes are the only metabolically active life-forms. By using the (SO42-)-S-35 tracer technique, we studied the activity of sulfate-reducing microorganisms (SRM) in hot sediment from a hydrothermal vent site in the northern part of freshwater Lake Tanganyika (East Africa). Incubation of slurry samples at 8 to 90 degrees C demonstrated meso- and thermophilic sulfate reduction with optimum temperatures of 34 to 45 degrees C and 56 to 65 degrees C, respectively, and with an upper temperature limit of 80 degrees C. Sulfate reduction was stimulated at all temperatures by the addition of short-chain fatty acids and benzoate or complex substrates (yeast extract and peptone). A time course experiment showed that linear thermophilic sulfate consumption occurred after a lag phase (12 h) and indicated the presence of a large population of SRM in the hydrothermal sediment. Thermophilic sulfate reduction had a pH optimum of about 7 and was completely inhibited at pH 8.8 to 9.2. SRM could be enriched from hydrothermal chimney and sediment samples at 60 and 75 degrees C. In lactate-grown enrichments, sulfide production occurred at up to 70 and 75 degrees C, with optima at 63 and 71 degrees C, respectively. Several sporulating thermophilic enrichments were morphologically similar to Desulfotomaculum spp. Dissimilatory sulfate reduction in the studied hydrothermal area of Lake Tanganyika apparently has an upper temperature limit of 80 degrees C
Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle
Microsensors, including a recently developed NO3 − biosensor, were applied to measure O2 and NO3 − profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O2, high NO3 −, and bottom water current. On addition of NO3 −and NO2 −, Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3 − was only 0.5 mm and a sharp maximum of NO3 − uptake was observed 0.5 mm above the sediment surface. In sediments with only fewThioploca spp., NO3 − was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3 − to NH4 +. Measurements of the intracellular NO3 − and S0 pools inThioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3 − were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment
Disk and Envelope Structure in Class 0 Protostars: I. The Resolved Massive Disk in Serpens FIRS 1
We present the first results of a program to characterize the disk and
envelope structure of typical Class 0 protostars in nearby low-mass star
forming regions. We use Spitzer IRS mid-infrared spectra, high resolution CARMA
230 GHz continuum imaging, and 2-D radiative transfer models to constrain the
envelope structure, as well as the size and mass of the circum-protostellar
disk in Serpens FIRS 1. The primary envelope parameters (centrifugal radius,
outer radius, outflow opening angle, and inclination) are well constrained by
the spectral energy distribution (SED), including Spitzer IRAC and MIPS
photometry, IRS spectra, and 1.1 mm Bolocam photometry. These together with the
excellent uv-coverage (4.5-500 klam) of multiple antenna configurations with
CARMA allow for a robust separation of the envelope and a resolved disk. The
SED of Serpens FIRS 1 is best fit by an envelope with the density profile of a
rotating, collapsing spheroid with an inner (centrifugal) radius of
approximately 600 AU, and the millimeter data by a large resolved disk with
Mdisk~1.0 Msun and Rdisk~300 AU. These results suggest that large, massive
disks can be present early in the main accretion phase. Results for the larger,
unbiased sample of Class~0 sources in the Perseus, Serpens, and Ophiuchus
molecular clouds are needed to determine if relatively massive disks are
typical in the Class 0 stage.Comment: Comments: 13 pages, 8 figures, 3 tables; accepted for publication in
the Ap
The Faber-Jackson relation for early-type galaxies: Dependence on the magnitude range
We take a sample of early-type galaxies from the Sloan Digital Sky Survey
(SDSS-DR7, 90 000 galaxies) spanning a range of approximately 7 in
both and filters and analyse the behaviour of the Faber-Jackson
relation parameters as functions of the magnitude range. We calculate the
parameters in two ways: i) We consider the faintest (brightest) galaxies in
each sample and we progressively increase the width of the magnitude interval
by inclusion of the brighter (fainter) galaxies
(increasing-magnitude-intervals), and ii) we consider narrow-magnitude
intervals of the same width ( ) over the whole magnitude
range available (narrow-magnitude-intervals). Our main results are that: i) in
both increasing and narrow-magnitude-intervals the Faber-Jackson relation
parameters change systematically, ii) non-parametric tests show that the
fluctuations in the values of the slope of the Faber-Jackson relation are not
products of chance variations. We conclude that the values of the Faber-Jackson
relation parameters depend on the width of the magnitude range and the
luminosity of galaxies within the magnitude range. This dependence is caused,
to a great extent by the selection effects and because the geometrical shape of
the distribution of galaxies on the plane depends on
luminosity. We therefore emphasize that if the luminosity of galaxies or the
width of the magnitude range or both are not taken into consideration when
comparing the structural relations of galaxy samples for different wavelengths,
environments, redshifts and luminosities, any differences found may be
misinterpreted.Comment: 15 pages, 5 figures. A&A. Accepte
An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation
In this work we design a receiver that iteratively passes soft information
between the channel estimation and data decoding stages. The receiver
incorporates sparsity-based parametric channel estimation. State-of-the-art
sparsity-based iterative receivers simplify the channel estimation problem by
restricting the multipath delays to a grid. Our receiver does not impose such a
restriction. As a result it does not suffer from the leakage effect, which
destroys sparsity. Communication at near capacity rates in high SNR requires a
large modulation order. Due to the close proximity of modulation symbols in
such systems, the grid-based approximation is of insufficient accuracy. We show
numerically that a state-of-the-art iterative receiver with grid-based sparse
channel estimation exhibits a bit-error-rate floor in the high SNR regime. On
the contrary, our receiver performs very close to the perfect channel state
information bound for all SNR values. We also demonstrate both theoretically
and numerically that parametric channel estimation works well in dense
channels, i.e., when the number of multipath components is large and each
individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin
C18O (3-2) observations of the Cometary Globule CG 12: a cold core and a C18O hot spot
The feasibility of observing the C18O (3-2) spectral line in cold clouds with
the APEX telescope has been tested. As the line at 329.330 GHz lies in the wing
of a strong atmospheric H2O absorption it can be observed only at high altitude
observatories. Using the three lowest rotational levels instead of only two
helps to narrow down the physical properties of dark clouds and globules. The
centres of two C18O maxima in the high latitude low mass star forming region CG
12 were mapped in C18O (3-2) and the data were analyzed together with spectral
line data from the SEST. The T_MB(3-2)/T_MB(2-1) ratio in the northern C18O
maximum, CG 12 N, is 0.8, and in the southern maximum, CG 12 S, ~2. CG 12 N is
modelled as a 120'' diameter (0.4pc) cold core with a mass of 27 Msun. A small
size maximum with a narrow, 0.8 kms-1, C18O (3-2) spectral line with a peak
temperature of T_MB ~11 K was detected in CG 12 S. This maximum is modelled as
a 60'' to 80'' diameter (~0.2pc) hot (80 K < Tex < 200 K) ~1.6 Msun clump. The
source lies on the axis of a highly collimated bipolar molecular outflow near
its driving source. This is the first detection of such a compact, warm object
in a low mass star forming region.Comment: APEX A&A special issue, accepte
- …