27 research outputs found

    Association of Birth Asphyxia With Regional White Matter Abnormalities Among Patients With Schizophrenia and Bipolar Disorders

    Get PDF
    Importance: White matter (WM) abnormalities are commonly reported in psychiatric disorders. Whether peripartum insufficiencies in brain oxygenation, known as birth asphyxia, are associated with WM of patients with severe mental disorders is unclear. Objective: To examine the association between birth asphyxia and WM in adult patients with schizophrenia and bipolar disorders (BDs) compared with healthy adults. Design, setting, and participants: In this case-control study, all individuals participating in the ongoing Thematically Organized Psychosis project were linked to the Medical Birth Registry of Norway (MBRN), where a subset of 271 patients (case group) and 529 healthy individuals (control group) had undergone diffusion-weighted imaging (DWI). Statistical analyses were performed from June 16, 2020, to March 9, 2021. Exposures: Birth asphyxia was defined based on measures from standardized reporting at birth in the MBRN. Main outcomes and measures: Associations between birth asphyxia and WM regions of interest diffusion metrics, ie, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), were compared between groups using analysis of covariance, adjusted for age, age squared, and sex. Results: Of the 850 adults included in the study, 271 were in the case group (140 [52%] female individuals; mean [SD] age, 28.64 [7.43] years) and 579 were in the control group (245 [42%] female individuals; mean [SD] age, 33.54 [8.31] years). Birth asphyxia measures were identified in 15% to 16% of participants, independent of group. The posterior limb of the internal capsule (PLIC) showed a significant diagnostic group × birth asphyxia interaction (F(1, 843) = 11.46; P = .001), reflecting a stronger association between birth asphyxia and FA in the case group than the control group. RD, but not AD, also displayed a significant diagnostic group × birth asphyxia interaction (F(1, 843) = 9.28; P = .002) in the PLIC, with higher values in patients with birth asphyxia and similar effect sizes as observed for FA. Conclusions and relevance: In this case-control study, abnormalities in the PLIC of adult patients with birth asphyxia may suggest a greater susceptibility to hypoxia in patients with severe mental illness, which could lead to myelin damage or impeded brain development. Echoing recent early-stage schizophrenia studies, abnormalities of the PLIC are relevant to psychiatric disorders, as the PLIC contains important WM brain pathways associated with language, cognitive function, and sensory function, which are impaired in schizophrenia and BDs

    Divergent epigenetic responses to perinatal asphyxia in severe mental disorders

    Get PDF
    Epigenetic modifications influenced by environmental exposures are molecular sources of phenotypic heterogeneity found in schizophrenia and bipolar disorder and may contribute to shared etiopathogenetic mechanisms of these two disorders. Newborns who experienced perinatal asphyxia have suffered reduced oxygen delivery to the brain around the time of birth, which increases the risk of later psychiatric diagnosis. This study aimed to investigate DNA methylation in blood cells for associations with a history of perinatal asphyxia, a neurologically harmful condition occurring within the biological environment of birth. We utilized prospective data from the Medical Birth Registry of Norway to identify incidents of perinatal asphyxia in 643 individuals with schizophrenia or bipolar disorder and 676 healthy controls. We performed an epigenome wide association study to distinguish differentially methylated positions associated with perinatal asphyxia. We found an interaction between methylation and exposure to perinatal asphyxia on case–control status, wherein having a history of perinatal asphyxia was associated with an increase of methylation in healthy controls and a decrease of methylation in patients on 4 regions of DNA important for brain development and function. The differentially methylated regions were observed in genes involved in oligodendrocyte survival and axonal myelination and functional recovery (LINGO3); assembly, maturation and maintenance of the brain (BLCAP;NNAT and NANOS2) and axonal transport processes and neural plasticity (SLC2A14). These findings are consistent with the notion that an opposite epigenetic response to perinatal asphyxia, in patients compared with controls, may contribute to molecular mechanisms of risk for schizophrenia and bipolar disorder.publishedVersio

    Asphyxia at birth affects brain structure in patients on the schizophrenia-bipolar disorder spectrum and healthy participants

    No full text
    Background Uncertainty exists about what causes brain structure alterations associated with schizophrenia (SZ) and bipolar disorder (BD). Whether a history of asphyxia-related obstetric complication (ASP) – a common but harmful condition for neural tissue – contributes to variations in adult brain structure is unclear. We investigated ASP and its relationship to intracranial (ICV), global brain volumes and regional cortical and subcortical structures. Methods A total of 311 patients on the SZ – BD spectrum and 218 healthy control (HC) participants underwent structural magnetic resonance imaging. They were evaluated for ASP using prospective information obtained from the Medical Birth Registry of Norway. Results In all groups, ASP was related to smaller ICV, total brain, white and gray matter volumes and total surface area, but not to cortical thickness. Smaller cortical surface areas were found across frontal, parietal, occipital, temporal and insular regions. Smaller hippocampal, amygdala, thalamus, caudate and putamen volumes were reported for all ASP subgroups. ASP effects did not survive ICV correction, except in the caudate, which remained significantly smaller in both patient ASP subgroups, but not in the HC. Conclusions Since ASP was associated with smaller brain volumes in all groups, the genetic risk of developing a severe mental illness, alone, cannot easily explain the smaller ICV. Only the smaller caudate volumes of ASP patients specifically suggest that injury from ASP can be related to disease development. Our findings give support for the ICV as a marker of aberrant neurodevelopment and ASP in the etiology of brain development in BD and SZ

    Cytomegalovirus infection associated with smaller dentate gyrus in men with severe mental illness

    No full text
    Cytomegalovirus (CMV) infection is usually inapparent in healthy adults but persists for life. Neural progenitor/stem cells are main CMV targets, and dentate gyrus (DG) a major neurogenic niche. Smaller DG volume has been repeatedly reported in severe mental illness (SMI). Considering the suggested immune system, blood–brain barrier and DG disturbances in SMI, we hypothesized that CMV exposure is associated with smaller DG volume in patients, but not healthy controls (HC). Due to the differential male and female immune response to CMV, we hypothesized sex-dependent associations. 381 adult patients with SMI (schizophrenia spectrum or bipolar spectrum disorders) and 396 HC were included. MRI scans were obtained with 1.5T Siemens MAGNETOM Sonata scanner or 3T General Electric Signa HDxt scanner, and processed with FreeSurfer v6.0. CMV immunoglobulin G antibody concentrations were measured by solid phase immunoassay. We investigated main and interaction effects of CMV status (antibody positivity/CMV + vs. negativity/CMV-) and sex on DG in patients and HC. Among patients, there was a significant CMV-by-sex interaction on DG (p = 0.009); CMV + male patients had significantly smaller DG volume than CMV- male patients (p = 0.001, 39 mm3 volume difference) whereas no CMV-DG association was found in female patients. Post-hoc analysis among male patients showed that the CMV-DG association was present in both hemispheres and in both patients with schizophrenia spectrum and bipolar spectrum disorders, and further, that higher CMV antibody titers were associated with smaller DG. No CMV-DG association was found in HC. The results indicate a DG vulnerability to CMV infection in men with SMI

    Brain structure abnormalities in first-episode psychosis patients with persistent apathy

    Get PDF
    Background Apathy is an enduring and debilitating feature related to poor outcome in patients with first-episode psychosis (FEP). The biological underpinnings of apathy are unknown. We tested if FEP patients with persistent apathy (PA) differed from FEP patients without persistent apathy (NPA) in specific brain structure measures in the early phase of illness. Methods A total of 70 Norwegian FEP patients were recruited within 1 year of first adequate treatment. They were defined as having PA (N = 18) or NPA (N = 52) based on Apathy Evaluation Scale score at baseline and 1 year later. MRI measures of cortical thickness and subcortical structure volumes were compared between the PA and NPA groups. Results The PA group had significantly thinner left orbitofrontal cortex and left anterior cingulate cortex. The results remained significant after controlling for depressive symptoms and antipsychotic medication. Discussion FEP patients with persistent apathy in the early phase of their illness show brain structural changes compared to FEP patients without persistent apathy. The changes are confined to regions associated with motivation, occur early in the disease course and appear selectively in PA patients when both groups are compared to healthy controls

    Significant association between intracranial volume and verbal intellectual abilities in patients with schizophrenia and a history of birth asphyxia

    No full text
    Background The etiology of schizophrenia (SZ) is proposed to include an interplay between a genetic risk for disease development and the biological environment of pregnancy and birth, where early adversities may contribute to the poorer developmental outcome. We investigated whether a history of birth asphyxia (ASP) moderates the relationship between intracranial volume (ICV) and intelligence in SZ, bipolar disorder (BD) and healthy controls (HC). Methods Two hundred seventy-nine adult patients (18–42 years) on the SZ and BD spectrums and 216 HC were evaluated for ASP based on information from the Medical Birth Registry of Norway. Participants underwent structural magnetic resonance imaging (MRI) to estimate ICV and intelligence quotient (IQ) assessment using the Wechsler Abbreviated Scale of Intelligence (WASI). Multiple linear regressions were used for analyses. Results We found a significant three-way interaction (ICV × ASP × diagnosis) on the outcome variable, IQ, indicating that the correlation between ICV and IQ was stronger in patients with SZ who experienced ASP compared to SZ patients without ASP. This moderation by ASP was not found in BD or HC groups. In patients with SZ, the interaction between ICV and a history of the ASP was specifically related to the verbal subcomponent of IQ as measured by WASI. Conclusions The significant positive association between ICV and IQ in patients with SZ who had experienced ASP might indicate abnormal neurodevelopment. Our findings give support for ICV together with verbal intellectual abilities as clinically relevant markers that can be added to prediction tools to enhance evaluations of SZ risk

    Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods

    No full text
    Background The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. Methods We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. Results Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. Conclusions In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies

    In Vivo Amygdala Nuclei Volumes in Schizophrenia and Bipolar Disorders

    No full text
    Abstract Abnormalities in amygdala volume are well-established in schizophrenia and commonly reported in bipolar disorders. However, the specificity of volumetric differences in individual amygdala nuclei is largely unknown. Patients with schizophrenia disorders (SCZ, N = 452, mean age 30.7 ± 9.2 [SD] years, females 44.4%), bipolar disorders (BP, N = 316, 33.7 ± 11.4, 58.5%), and healthy controls (N = 753, 34.1 ± 9.1, 40.9%) underwent T1-weighted magnetic resonance imaging. Total amygdala, nuclei, and intracranial volume (ICV) were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple linear regression models, adjusting for age, age2, ICV, and sex, were fitted to examine diagnostic group and subgroup differences in volume, respectively. Bilateral total amygdala and all nuclei volumes, except the medial and central nuclei, were significantly smaller in patients relative to controls. The largest effect sizes were found for the basal nucleus, accessory basal nucleus, and cortico-amygdaloid transition area (partial η2 > 0.02). The diagnostic subgroup analysis showed that reductions in amygdala nuclei volume were most widespread in schizophrenia, with the lateral, cortical, paralaminar, and central nuclei being solely reduced in this disorder. The right accessory basal nucleus was marginally smaller in SCZ relative to BP (t = 2.32, P = .05). Our study is the first to demonstrate distinct patterns of amygdala nuclei volume reductions in a well-powered sample of patients with schizophrenia and bipolar disorders. Volume differences in the basolateral complex (lateral, basal, and accessory basal nuclei), an integral part of the threat processing circuitry, were most prominent in schizophrenia

    Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods

    No full text
    Background The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. Methods We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. Results Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. Conclusions In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies
    corecore