148 research outputs found

    The black-hole masses of Seyfert galaxies and quasars

    Get PDF
    The central black-hole masses of a sample of 30 luminous quasars are estimated using H-beta FWHM measurements from a combination of new and previously-published nuclear spectra. The quasar black-hole mass estimates are combined with reverberation-mapping measurements for a sample of Seyfert galaxies (Wandel 1999) in order to study AGN black-hole masses over a wide range in nuclear luminosity. It is found that black-hole mass and bulge luminosity are well correlated and follow a relation consistent with that expected if black-hole and bulge mass are directly proportional. Contrary to the results of Wandel (1999) no evidence is found that Seyfert galaxies follow a different Mblack-Mbulge relation to quasars. However, the black-hole mass distributions of the radio-loud and radio-quiet quasar sub-samples are found to be significantly different, with the median black-hole mass of the radio-loud quasars a factor of three larger than their radio-quiet counterparts. Finally, utilizing the elliptical galaxy fundamental plane to provide stellar velocity dispersion estimates, a comparison is performed between the virial H-beta black-hole mass estimates and those of the Mblack-sigma correlations of Gebhardt et al. (2000a) and Merritt & Ferrarese (2000). With the disc-like geometry of the broad-line region adopted in this paper, the virial H-beta black-hole masses indicate that the correct normalization of the black-hole vs. bulge mass relation is Mblack=0.0025Mbulge, while the standard assumption of purely random broad-line velocities leads to Mblack=0.0008Mbulge. The normalization of Mblack=0.0025Mbulge provided by the disc model is in remarkably good agreement with that inferred for our quasar sample using the (completely independent) Mblack-sigma correlations.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Star and Planet Formation with ALMA: an Overview

    Full text link
    Submillimeter observations with ALMA will be the essential next step in our understanding of how stars and planets form. Key projects range from detailed imaging of the collapse of pre-stellar cores and measuring the accretion rate of matter onto deeply embedded protostars, to unravelling the chemistry and dynamics of high-mass star-forming clusters and high-spatial resolution studies of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of "Science with ALMA: a New Era for Astrophysics". Astrophysics & Space Science, in pres

    Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    Get PDF
    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom

    The First Cold Antihydrogen

    Full text link
    Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and Related Topics, to be published in NIM

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure

    Exposure to perfluoroalkyl substances and blood pressure in pregnancy among 1436 women from the Odense Child Cohort.

    Get PDF
    BACKGROUND: Previous studies of association between exposure to poly- and perfluoroalkyl substances (PFAS) and gestational hypertension (GH) and preeclampsia (PE) have shown conflicting results, but most dichotomized outcome and did not study continuous blood pressure (BP) changes. OBJECTIVES: To study the association between PFAS exposure in early pregnancy and maternal BP trajectories in pregnancy, gestational hypertension and preeclampsia. METHODS: 1436 women were enrolled in the Odense Child Cohort in early pregnancy and had a serum sample drawn, from which perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were measured using LC-MS/MS. Repeated BP measurements through pregnancy and information on PE were obtained from hospital files. Adjusted linear mixed models were used to investigate association between PFAS exposure and BP trajectory. Associations between PFAS and PE and GH were assessed by Cox proportional hazards model. RESULTS: All women had measurable concentrations of PFAS. In all of many comparisons higher PFAS exposure (apart from PFHxS) was associated with higher systolic (SBP) and diastolic (DBP) blood pressures, although not all were significant, which is unlikely to be due to chance. After adjustment, each doubling in PFOS or PFOA exposure was associated with 0.47 mmHg (95% CI: -0.13; 1.08) and 0.36 mmHg (-0.19; 0.92) higher SBP; and 0.58 mmHg (0.13; 1.04) and 0.37 mmHg (-0.05; 0.79) higher DBP. No clear associations between PFAS exposure and PE or GH were found. DISCUSSION: The magnitude of the association between PFAS exposure and BP might appear small, statistically non-significant and the possible clinical importance low. However, at a population level this may slightly shift the distribution of BP towards an increased incidence of GH. If BP increases in pregnancy, it may have long-term impact on health not only of the pregnant woman but also of her offspring
    corecore