20 research outputs found

    Impact of long-term agricultural management practices on therhizosphere microbiome and plant health

    Get PDF
    Increasing food and energy demands have resulted in a considerable intensification of farming practices, whichbrought about severe consequences for agricultural soils during last decades. In order to maintain soil quality andhealth for the future, the development of more extensive and sustainable farming strategies is urgently needed.The soil and rhizosphere microbiome play an integral role in virtually all soil processes and are intimately linkedto plant performance. Various studies indicated that agricultural management practices affect soil microbiomes.We therefore hypothesized that this external impact is conveyed by the microbial communities to the currentcrops at the time of their establishment. We used twelve differently managed soils from three long-term fieldtrials established in 1978 (Therwil, Switzerland), 1992 (Bernburg, Germany), and 2006 (Thyrow, Germany) toanalyze the impact of various management strategies (crop rotation, fertilization, tillage) on soil and its associatedrhizosphere microbiomes under consideration of plant productivity, plant health, and the ability of the soils tosuppress soil-borne phytopathogens. The model plant lettuce (Lactuca sativa L.) was cultivated for ten weeks undergrowth-chamber conditions in these soils. High-throughput sequencing of bacterial 16S rRNA genes or fungalITS fragments, respectively, PCR- amplified from total community DNA of rhizosphere and soil samples showedsignificant differences in microbial community compositions between soils that originated from the different fieldsites and long-term farming practices. Moreover, differences depending on long-term agricultural managementin plant productivity and health as measured by RT-qPCR of stress-related plant genes were observed. Localizedanalysis of rhizosphere soil solution was performed using non-invasive sampling techniques with sorption filtersplaced onto the surface of soil-grown roots along the root observation windows with subsequent HPLC-MSprofiling. Amino acids, sugars and antifungal organic acids such as benzoic acid detected in the rhizosphere soilsolutions confirmed variations in concentrations depending on the site and management practice indicating differ-ent stress potentials of farming practices for plants. Agricultural management also affected soil suppressiveness tothe soil-borne model pathogen Rhizoctonia solani.Under controlled growth chamber conditions, we could show the legacy of long-term agricultural managementpractices on the establishment and performance of a subsequent plant generation and its associated rhizospheremicrobiome

    Image-Guided Robotic Radiosurgery for the Treatment of Same Site Spinal Metastasis Recurrences

    Get PDF
    Background Due to recent medical advancements, patients suffering from metastatic spinal disease have a prolonged life expectancy than several decades ago, and some will eventually experience relapses. Data for the retreatment of spinal metastasis recurrences occurring at the very same macroscopic spot as the initially treated lesion are limited. Previous studies mainly included recurrences in the boundary areas as well as other macroscopic parts of the initially affected vertebrae. This study exclusively analyzes the efficacy and safety of spinal reirradiation for recurrences on the same site utilizing single-session robotic radiosurgery. Materials and Methods Patients between 2005 and 2020 who received radiotherapy for a spinal metastasis suffering from a local recurrence were eligible for analysis. Only patients undergoing a single-session reirradiation were included. All recurrences must have been occurred in the same location as the initial lesion. This was defined as a macroscopic recurrence on computed tomography occurring at the same site as the initial spinal metastasis. All other lesions, including those in the boundary areas or other parts of the initially affected vertebrae, were excluded. Results Fifty-three patients with fifty-three lesions were retreated for spinal metastases. The median dose and number of fractions for the initial radiotherapy were 36 Gy and 15, respectively. Eleven patients were initially treated with stereotactic body radiotherapy. Retreatment was performed with a median dose of 18 Gy prescribed to a median isodose of 70%. The local control was 77% after a median follow-up of 22.2 months. Patients experiencing a second recurrence received a lower dose (p = 0.04), mostly below 18 Gy, and had a worse coverage (p = 0.01) than those showing local tumor control. 51% of patients experienced an improvement in pain control after treatment delivery. Besides, four vertebral compression fractures (7% of patients) but no other adverse events higher than grade 2 were observed. Conclusion Single-session robotic radiosurgery appears to be a safe, time-saving, and effective treatment modality for spinal metastasis recurrences occurring in the same initial location if a considerable dose and coverage can be applied. Treatment results are comparable to reirradiated metastases in the boundary areas

    Time course and progression of wild type α-Synuclein accumulation in a transgenic mouse model

    No full text
    Abstract Background Progressive accumulation of α-synuclein (α-Syn) protein in different brain regions is a hallmark of synucleinopathic diseases, such as Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. α-Syn transgenic mouse models have been developed to investigate the effects of α-Syn accumulation on behavioral deficits and neuropathology. However, the onset and progression of pathology in α-Syn transgenic mice have not been fully characterized. For this purpose we investigated the time course of behavioral deficits and neuropathology in PDGF-β human wild type α-Syn transgenic mice (D-Line) between 3 and 12 months of age. Results These mice showed progressive impairment of motor coordination of the limbs that resulted in significant differences compared to non-transgenic littermates at 9 and 12 months of age. Biochemical and immunohistological analyses revealed constantly increasing levels of human α-Syn in different brain areas. Human α-Syn was expressed particularly in somata and neurites of a subset of neocortical and limbic system neurons. Most of these neurons showed immunoreactivity for phosphorylated human α-Syn confined to nuclei and perinuclear cytoplasm. Analyses of the phenotype of α-Syn expressing cells revealed strong expression in dopaminergic olfactory bulb neurons, subsets of GABAergic interneurons and glutamatergic principal cells throughout the telencephalon. We also found human α-Syn expression in immature neurons of both the ventricular zone and the rostral migratory stream, but not in the dentate gyrus. Conclusion The present study demonstrates that the PDGF-β α-Syn transgenic mouse model presents with early and progressive accumulation of human α-Syn that is accompanied by motor deficits. This information is essential for the design of therapeutical studies of synucleinopathies.</p

    Time course and progression of wild type ¿-Synuclein accumulation in a transgenic mouse model

    Get PDF
    Abstract Background Progressive accumulation of α-synuclein (α-Syn) protein in different brain regions is a hallmark of synucleinopathic diseases, such as Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. α-Syn transgenic mouse models have been developed to investigate the effects of α-Syn accumulation on behavioral deficits and neuropathology. However, the onset and progression of pathology in α-Syn transgenic mice have not been fully characterized. For this purpose we investigated the time course of behavioral deficits and neuropathology in PDGF-β human wild type α-Syn transgenic mice (D-Line) between 3 and 12 months of age. Results These mice showed progressive impairment of motor coordination of the limbs that resulted in significant differences compared to non-transgenic littermates at 9 and 12 months of age. Biochemical and immunohistological analyses revealed constantly increasing levels of human α-Syn in different brain areas. Human α-Syn was expressed particularly in somata and neurites of a subset of neocortical and limbic system neurons. Most of these neurons showed immunoreactivity for phosphorylated human α-Syn confined to nuclei and perinuclear cytoplasm. Analyses of the phenotype of α-Syn expressing cells revealed strong expression in dopaminergic olfactory bulb neurons, subsets of GABAergic interneurons and glutamatergic principal cells throughout the telencephalon. We also found human α-Syn expression in immature neurons of both the ventricular zone and the rostral migratory stream, but not in the dentate gyrus. Conclusion The present study demonstrates that the PDGF-β α-Syn transgenic mouse model presents with early and progressive accumulation of human α-Syn that is accompanied by motor deficits. This information is essential for the design of therapeutical studies of synucleinopathies
    corecore