17 research outputs found

    Impacts of Rural Electrification in Rwanda

    Full text link
    Rural electrification is believed to contribute to the achievement of the MDG. In this paper, we investigate electrification impacts on different indicators. We use household data that we collected in Rwanda in villages with and without electricity access. We account for self-selection and regional differences by using households from the electrified villages to estimate the probability to connect for all households - including those in the non-electrified villages. Based on these probabilities we identify counterfactual households and find robust evidence for positive effects on lighting usage. Effects on income and children's home studying become insignificant if regional differences are accounted for

    Leukocyte Tyrosine Kinase Functions in Pigment Cell Development

    Get PDF
    A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk

    Chemogenomic Analysis of G-Protein Coupled Receptors and Their Ligands Deciphers Locks and Keys Governing Diverse Aspects of Signalling

    Get PDF
    Understanding the molecular mechanism of signalling in the important super-family of G-protein-coupled receptors (GPCRs) is causally related to questions of how and where these receptors can be activated or inhibited. In this context, it is of great interest to unravel the common molecular features of GPCRs as well as those related to an active or inactive state or to subtype specific G-protein coupling. In our underlying chemogenomics study, we analyse for the first time the statistical link between the properties of G-protein-coupled receptors and GPCR ligands. The technique of mutual information (MI) is able to reveal statistical inter-dependence between variations in amino acid residues on the one hand and variations in ligand molecular descriptors on the other. Although this MI analysis uses novel information that differs from the results of known site-directed mutagenesis studies or published GPCR crystal structures, the method is capable of identifying the well-known common ligand binding region of GPCRs between the upper part of the seven transmembrane helices and the second extracellular loop. The analysis shows amino acid positions that are sensitive to either stimulating (agonistic) or inhibitory (antagonistic) ligand effects or both. It appears that amino acid positions for antagonistic and agonistic effects are both concentrated around the extracellular region, but selective agonistic effects are cumulated between transmembrane helices (TMHs) 2, 3, and ECL2, while selective residues for antagonistic effects are located at the top of helices 5 and 6. Above all, the MI analysis provides detailed indications about amino acids located in the transmembrane region of these receptors that determine G-protein signalling pathway preferences

    Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor–resistant human lung adenocarcinoma

    No full text
    Angiogenesis is critical for tumor growth and metastasis, and several inhibitors of angiogenesis are currently in clinical use for the treatment of cancer. However, not all patients benefit from antiangiogenic therapy, and those tumors that initially respond to treatment ultimately become resistant. The mechanisms underlying this, and the relative contributions of tumor cells and stroma to resistance, are not completely understood. Here, using species-specific profiling of mouse xenograft models of human lung adenocarcinoma, we have shown that gene expression changes associated with acquired resistance to the VEGF inhibitor bevacizumab occurred predominantly in stromal and not tumor cells. In particular, components of the EGFR and FGFR pathways were upregulated in stroma, but not in tumor cells. Increased activated EGFR was detected on pericytes of xenografts that acquired resistance and on endothelium of tumors with relative primary resistance. Acquired resistance was associated with a pattern of pericyte-covered, normalized revascularization, whereas tortuous, uncovered vessels were observed in relative primary resistance. Importantly, dual targeting of the VEGF and EGFR pathways reduced pericyte coverage and increased progression-free survival. These findings demonstrated that alterations in tumor stromal pathways, including the EGFR and FGFR pathways, are associated with, and may contribute to, resistance to VEGF inhibitors and that targeting these pathways may improve therapeutic efficacy. Understanding stromal signaling may be critical for developing biomarkers for angiogenesis inhibitors and improving combination regimens

    A novel class of oral direct renin inhibitors - highly potent 3,5-disubstituted piperidines bearing a tricyclic P3-P1 unit

    No full text
    The design and synthesis of a new direct renin inhibitor chemotype based on a 3,5-disubstituted piperidine bearing a tricyclic P3-P1 unit (4, IC50: 4 nM) is described. It is derived from a high-throughput screening hit containing the 3,5-disubstituted piperidine (3, IC50: 1.2 uM) and a tricyclic fragment (2, IC50 >100 uM) binding to the S1-S3 site of renin
    corecore