5 research outputs found

    Efficient Brain Age Prediction from 3D MRI Volumes Using 2D Projections

    Get PDF
    Using 3D CNNs on high-resolution medical volumes is very computationally demanding, especially for large datasets like UK Biobank, which aims to scan 100,000 subjects. Here, we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of 3D volumes leads to reasonable test accuracy (mean absolute error of about 3.5 years) when predicting age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 20–50 s using a single GPU, which is two orders of magnitude faster than a small 3D CNN. This speedup is explained by the fact that 3D brain volumes contain a lot of redundant information, which can be efficiently compressed using 2D projections. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.publishedVersio

    Efficient brain age prediction from 3D MRI volumes using 2D projections

    Full text link
    Using 3D CNNs on high resolution medical volumes is very computationally demanding, especially for large datasets like the UK Biobank which aims to scan 100,000 subjects. Here we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of the 3D volumes leads to reasonable test accuracy when predicting the age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 20 - 50 seconds using a single GPU, which two orders of magnitude faster compared to a small 3D CNN. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs

    Deep learning on large neuroimaging datasets

    No full text
    Magnetic resonance imaging (MRI) is a medical imaging method that has become increasingly more important during the last 4 decades. This is partly because it allows us to acquire a 3D-representation of a part of the body without exposing patients to ionizing radiation. Furthermore, it also typically gives better contrast between soft tissues than x-ray based techniques such as CT. The image acquisition procedure of MRI is also much more flexible. One can vary the signal sequence, not only to change how different types of tissue map to different intensities, but also to measure flow, diffusion or even brain activity over time.  Machine learning has gained great impetus the last decade and a half. This is probably partly because of the work done on the mathematical foundations of machine learning done at the end of last century in conjunction with the availability of specialized massively parallel processors, originally developed as graphical processing units (GPUs), which are ideal for training or running machine learning models. The work presented in this thesis combines MRI and machine learning in order to leverage the large amounts of MRI-data available in open data sets, to address questions of clinical relevance about the brain.  The thesis comprises three studies. In the first one the subproblem which augmentation methods are useful in the larger context of classifying autism, was investigated. The second study is about predicting brain age. In particular it aims to construct light-weight models using the MRI volumes in a condensed form, so that the model can be trained in a short time and still reach good accuracy. The third study is a development of the previous that investigates other ways of condensing the brain volumes. Magnetresonansavbildningar, ofta kallat MR eller MRI, är en bilddiagnostik-metod som har blivit allt viktigare under de senaste 40 åren. Detta på grund av att man kan erhålla 3D-bilder av kroppsdelar utan att utsätta patienter för joniserande strålning. Dessutom får man typiskt bättre kontraster mellan mjukdelar än man får med motsvarande genomlysningsmetod (CT, eller 3D röntgen). Själva bildinsamlingsförfarandet är också mera flexibelt med MR. Man kan genom att ändra program för utsända och registrerade signa-ler, inte bara ändra vad som framförallt framträder på bilden (t.ex. vatten, fett, H-densitet, o.s.v.) utan även mäta flöde och diffusion eller till och med hjärnaktivitet över tid. Maskininlärning har fått ett stort uppsving under 2010-talet, dels på grund av utveckling av teknologin för att träna och konstruera maskininlärningsmodeller dels på grund av tillgängligheten av massivt parallella specialprocessorer – initialt utvecklade för att generera datorgrafik. Detta arbete kombinerar MR med maskininlärning, för att dra nytta av de stora mängder MR data som finns samlad i öppna databaser, för att adressera frågor av kliniskt intresse angående hjärnan. Avhandlingen innehåller tre studier. I den första av dessa undersöks del-problemet vilken eller vilka metoder för att artificiellt utöka träningsdata som är bra vid klassificering om en person har autism. Det andra arbetet adresserar bedömning av så kallad "hjärn-ålder". Framför allt strävar arbetet efter att hitta lättviktsmodeller som använder en komprimerad form av varje hjärnvolym, och därmed snabbt kan tränas till att bedöma en persons ålder från en MR-volym av hjärnan. Det tredje arbetet utvecklar modellen från det föregående genom att undersöka andra typer av komprimering.  Funding: This research was supported by the Swedish research council (2017-04889), the ITEA/VINNOVA project ASSIST (Automation, Surgery Support and Intuitive 3D visualization to optimize workflow in IGT SysTems, 2021-01954), and the Åke Wiberg foundation (M20-0031, M21-0119, M22-0088).</p

    Evaluation of Augmentation Methods in Classifying Autism Spectrum Disorders from fMRI Data with 3D Convolutional Neural Networks

    No full text
    Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of attention during the last 10 years, and recently, different deep learning approaches have been used. Despite this fact, there has not been any investigation regarding how 3D augmentation can help to create larger datasets, required to train deep networks with millions of parameters. In this study, deep learning was applied to derivatives from resting state functional MRI data, to investigate how different 3D augmentation techniques affect the test accuracy. Specifically, resting state derivatives from 1112 subjects in ABIDE (Autism Brain Imaging Data Exchange) preprocessed were used to train a 3D convolutional neural network (CNN) to classify each subject according to presence or absence of autism spectrum disorder. The results show that augmentation only provide minor improvements to the test accuracy.Funding: Swedish research council [2017-04889]; ITEA/VINNOVA [2021-01954]; Ake Wiberg foundation [M22-0088]</p

    Evaluation of Augmentation Methods in Classifying Autism Spectrum Disorders from fMRI Data with 3D Convolutional Neural Networks

    No full text
    Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of attention during the last 10 years, and recently, different deep learning approaches have been used. Despite this fact, there has not been any investigation regarding how 3D augmentation can help to create larger datasets, required to train deep networks with millions of parameters. In this study, deep learning was applied to derivatives from resting state functional MRI data, to investigate how different 3D augmentation techniques affect the test accuracy. Specifically, resting state derivatives from 1112 subjects in ABIDE (Autism Brain Imaging Data Exchange) preprocessed were used to train a 3D convolutional neural network (CNN) to classify each subject according to presence or absence of autism spectrum disorder. The results show that augmentation only provide minor improvements to the test accuracy.Funding: Swedish research council [2017-04889]; ITEA/VINNOVA [2021-01954]; Ake Wiberg foundation [M22-0088]</p
    corecore