41 research outputs found

    Inference of plasmid copy number mean and noise from single cell gene expression data

    Full text link
    Plasmids are extra-chromosomal DNA molecules which code for their own replication. We previously reported a setup using genes coding for fluorescent proteins of two colors that allowed us, using a simple model, to extract the plasmid copy number noise in a monoclonal population of bacteria [J. Wong Ng et al., Phys. Rev. E, 81, 011909 (2010)]. Here we present a detailed calculation relating this noise to the measured levels of fluorescence, taking into account all sources of fluorescence fluctuations: the fluctuation of gene expression as in the simple model, but also the growth and division of bacteria, the non-uniform distribution of their ages, the random partition of proteins at divisions and the replication and partition of plasmids and chromosome. We show how using the chromosome as a reference helps extracting the plasmid copy number noise in a self-consistent manner.Comment: 9 pages, 3 figures, 2 table

    Variation du nombre de copies de plasmides au sein populations monoclonales de bactéries

    Get PDF
    Plasmids are extra chromosomal DNA that can confer to their hosts' supplementary characteristics such as antibiotic resistance. Plasmids code for their copy number through their own replication frequency. Even though the biochemical networks underlying the plasmid copy numberLes plasmides sont des fragments d'ADN extrachromosomaux largement utilisés en tant qu'outil en biologie moléculaire. Un plasmide code pour sa propre fréquence de réplication et peut être à copies multiples au sein de son hôte (e.g. la bactérie). Il peut aussi apporter à son hôte un avantage sélectif tel que la résistance à un antibiotique, ce qui confère un caractère symbiotique au système hôte-plasmide. Nous voulons explorer : 1-les variations du nombre de copies de plasmides (PCN) afin de comprendre les interactions que le plasmide peut avoir avec son hôte 2- la manière dont se fait la régulation de ce nombre de copies. Nous nous sommes fixés quelques plasmides modèles dans lesquels nous avons inséré le gène d'une protéine fluorescente (mOrange). Ces plasmides ont été injectés dans une bactérie contenant le gène d'un autre rapporteur fluorescent (eGFP) sur son chromosome ce qui nous permet d'avoir une référence au sein de chaque bactérie. Nous avons ensuite observé ces bactéries transformées à l'aide d'un dispositif microfluidique développé au la- boratoire qui nous permet des observations de bas niveau de fluorescence sur des bactéries isolées. Pour chaque plasmide étudié, nous avons pu mesurer son PCN moyen par bactérie au sein de la population. Nous avons aussi évalué son PCN moyen à l'aide de techniques usuelles de biologie moléculaire, et avons obtenu approximativement les mêmes résultats. Nous avons constaté pour certains plasmides des variations d'expression de la mOrange plus grandes que pour la eGFP. Nous attribuons cette augmentation de la variabilité d'expression à la variabilité du PCN. Cette variabilité soit d'autant plus petite que le PCN moyen est grand. Ensuite, nous avons pu extraire des données la variation du PCN au sein de la population. Par ailleurs, nous donnons aussi à l'aide d'une méthode plus approximative la distribution du PCN par bactérie. Finalement, nous avons fait croître les bactéries dans un milieu contenant plus ou moins d'antibiotique dont la résistance est portée par le plasmide. Nous n'avons pas réussi à changer les caractéristiques des plasmides, mais avons pu regarder le phénomène de perte dans un de nos plasmides

    Variation du nombre de copies de plasmides au sein des populations monoclonales de bactéries

    No full text
    Les plasmides sont des fragments d'ADN extrachromosomaux. Un plasmide code pour sa propre fréquence de réplication et peut être à copies multiples au sein de son hôte. Il peut aussi apporter à son hôte un avantage sélectif. Dans quelques plasmides modèles, nous avons inséré le gène d'une protéine fluorescente (mOrange). Ces plasmides ont été injectés dans une bactérie contenant le gène d'un autre rapporteur fluorescent (eGFP) sur son chromosome. Nous avons observé ces bactéries à l'aide d'un dispositif microfluidique qui nous permet des observations de bas niveau de fluorescence sur des bactéries isolées. Pour chaque plasmide étudié, nous avons pu mesurer son nombre de copies (PCN) moyen par bactérie au sein de la population. Ensuite, nous avons extrait des données la variation du PCN au sein de la population. Par ailleurs, nous donnons aussi à l'aide d'une méthode plus approximative la distribution du PCN par bactérie. Finalement, nous n'avons pas réussi à changer les caractéristiquePARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF

    Gene inactivation of a chemotaxis operon in the pathogen Leptospira interrogans

    No full text
    International audienceChemotaxis may have an important role in the infection process of pathogenic Leptospira spp.; however, little is known about the regulation of flagellar-based motility in these atypical bacteria. We generated a library of random transposon mutants of the pathogen L. interrogans, which included a mutant with insertion in the first gene of an operon containing the chemotaxis genes cheA, cheW, cheD, cheB, cheY and mcp. The disrupted gene encodes a putative histidine kinase (HK). The HK mutant was motile and virulent, but swarm plate and capillary assays suggested that chemotaxis was reduced in this mutant. Further analysis of bacterial trajectories by videomicroscopy showed that the ability of this mutant to reverse was significantly impaired in comparison to wild-type strain. Our data therefore show that this operon is required for full chemotaxis of Leptospira spp

    The Role of Adaptation in Bacterial Speed Races.

    No full text
    Evolution of biological sensory systems is driven by the need for efficient responses to environmental stimuli. A paradigm among prokaryotes is the chemotaxis system, which allows bacteria to navigate gradients of chemoattractants by biasing their run-and-tumble motion. A notable feature of chemotaxis is adaptation: after the application of a step stimulus, the bacterial running time relaxes to its pre-stimulus level. The response to the amino acid aspartate is precisely adapted whilst the response to serine is not, in spite of the same pathway processing the signals preferentially sensed by the two receptors Tar and Tsr, respectively. While the chemotaxis pathway in E. coli is well characterized, the role of adaptation, its functional significance and the ecological conditions where chemotaxis is selected, are largely unknown. Here, we investigate the role of adaptation in the climbing of gradients by E. coli. We first present theoretical arguments that highlight the mechanisms that control the efficiency of the chemotactic up-gradient motion. We discuss then the limitations of linear response theory, which motivate our subsequent experimental investigation of E. coli speed races in gradients of aspartate, serine and combinations thereof. By using microfluidic techniques, we engineer controlled gradients and demonstrate that bacterial fronts progress faster in equal-magnitude gradients of serine than aspartate. The effect is observed over an extended range of concentrations and is not due to differences in swimming velocities. We then show that adding a constant background of serine to gradients of aspartate breaks the adaptation to aspartate, which results in a sped-up progression of the fronts and directly illustrate the role of adaptation in chemotactic gradient-climbing

    Organoids and organ-on-chip technology for investigating host-microorganism interactions

    No full text
    International audienceRecent advances in organoid and organ-on-chip (OoC) technologies offer an unprecedented level of tissue mimicry. These models can recapitulate the diversity of cellular composition, 3D organization, and mechanical stimulation. These approaches are intensively used to understand complex diseases. This review focuses on the latest advances in this field to study host-microorganism interactions

    Genome-wide CRISPR-Cas9 screen in E. coli identifies design rules for efficient targeting

    No full text
    The main outcome of efficient CRISPR-Cas9 cleavage in the chromosome of bacteria is cell death. This can be conveniently used to eliminate specific genotypes from a mixed population of bacteria, which can be achieved both in vitro, e.g. to select mutants, or in vivo as an antimicrobial strategy. The efficiency with which Cas9 kills bacteria has been observed to be quite variable depending on the specific target sequence, but little is known about the sequence determinants and mechanisms involved. Here we performed a genome-wide screen of Cas9 cleavage in the chromosome of E. coli to determine the efficiency with which each guide RNA kills the cell. Surprisingly we observed a large-scale pattern where guides targeting some regions of the chromosome are more rapidly depleted than others. Unexpectedly, this pattern arises from the influence of degrading specific chromosomal regions on the copy number of the plasmid carrying the guide RNA library. After taking this effect into account, it is possible to train a neural network to predict Cas9 efficiency based on the target sequence. We show that our model learns different features than previous models trained on Eukaryotic CRISPR-Cas9 knockout libraries. Our results highlight the need for specific models to design efficient CRISPR-Cas9 tools in bacteria

    Glider soaring via reinforcement learning in the field

    No full text
    International audienceSoaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances. The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported away by the wind. How soaring birds find and navigate thermals within this complex landscape is unknown. Reinforcement learning provides an appropriate framework in which to identify an effective navigational strategy as a sequence of decisions made in response to environmental cues. Here we use reinforcement learning to train a glider in the field to navigate atmospheric thermals autonomously. We equipped a glider of two-metre wingspan with a flight controller that precisely controlled the bank angle and pitch, modulating these at intervals with the aim of gaining as much lift as possible. A navigational strategy was determined solely from the glider’s pooled experiences, collected over several days in the field. The strategy relies on on-board methods to accurately estimate the local vertical wind accelerations and the roll-wise torques on the glider, which serve as navigational cues. We establish the validity of our learned flight policy through field experiments, numerical simulations and estimates of the noise in measurements caused by atmospheric turbulence. Our results highlight the role of vertical wind accelerations and roll-wise torques as effective mechanosensory cues for soaring birds and provide a navigational strategy that is directly applicable to the development of autonomous soaring vehicles

    The <i>E. coli</i> running speed <i>vs</i> the chemoattractant concentrations.

    No full text
    <p>As in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004974#pcbi.1004974.g002" target="_blank">Fig 2</a>, the three curves refer to serine (red), aspartate (blue) or aspartate with a background of 30<i>μ</i>M of serine (green). The mean value is calculated by averaging over the population of bacteria and error bars represent the standard deviation of the velocity distribution over the population.</p
    corecore