20 research outputs found

    An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure

    Get PDF
    International audienceA new method to form a nanoparticle-structured hydrogel is reported; it is based on the drug being loaded into the nanoparticles to form a solid structure. A lipophilic form of gemcitabine (modified lauroyl), an anti-cancer drug, was encapsulated in lipid nanocapsules (LNCs), using a phase-inversion temperature process. A gel was formed spontaneously, depending on the LNC concentration. The drug loading, measured with total entrapment efficiency, and the rheological properties of the gel were assessed. Physical studies (surface tension measurements) showed that modified gemcitabine was localised at the oil–water interface of the LNC, and that the gemcitabine moieties of the prodrug were exposed to the water phase. This particular assembly promoted inter-LNC interactions via hydrogen bonds between gemcitabine moieties that led to an LNC gel structure in water, without a matrix, like a tridimensional pearl necklace. Dilution of the gel produced a gemcitabine-loaded LNC suspension in water, and these nanoparticles presented cytotoxic activity to various cancer cell lines to a greater degree than the native drug. Finally, the syringeability of the formulation was successfully tested and perspectives of its use as a nanomedicine (intratumoural or subcutaneous injection) can be foreseen

    Demonstration of the interactions between aromatic compound-loaded lipid nanocapsules and Acinetobacter baumannii bacterial membrane

    Get PDF
    International audienceAcinetobacter baumannii is an important nosocomial pathogen that is resistant to many commonly-used antibiotics. One strategy for treatment is the use of aromatic compounds (carvacrol, cinnamaldehyde) against A. baumannii. The aim of this study was to determine the interactions between bacteria and lipid nanocapsules (LNCs) over time based on the fluorescence of 3,3'-Dioctadecyloxacarbocyanine Perchlorate-LNCs (DiO-LNCs) and the properties of trypan blue to analyse the physicochemical mechanisms occurring at the level of the biological membrane. The results demonstrated the capacity of carvacrol-loaded LNCs to interact with and penetrate the bacterial membrane in comparison with cinnamaldehyde-loaded LNCs and unloaded LNCs. Modifications of carvacrol after substitution of hydroxyl functional groups by fatty acids demonstrated the crucial role of hydroxyl functions in antibacterial activity. Finally, after contact with the efflux pump inhibitor, carbonylcyanide-3-chlorophenyl hydrazine (CCCP), the results indicated the total synergistic antibacterial effect with Car-LNCs, showing that CCCP is associated with the action mechanism of carvacrol, especially at the level of the efflux pump mechanism.</p

    Development of 2D and 3D mucus models and their interactions with mucus-penetrating paclitaxel-loaded lipid nanocapsules.

    Get PDF
    International audiencePURPOSE: To study, diffusion through mucus (3D model) of different formulations of paclitaxel loaded lipid nanocapsules (Ptx-LNCs), to interpret the results in the light of LNC behavior at air-mucus interface (2D model).METHODS: LNC surface properties were modified with chitosan or poly(ethylene glycol) (PEG) coatings of different size (PEG 2,000 to 5,000 Da) and surface charges. LNC diffusion through 446 μm pig intestinal mucus layer was studied using Transwell(®). LNCs were spread at the air-water-mucus interface then interfacial pressure and area changes were monitored and the efficiency of triglyceride (TG) inclusion was determined.RESULTS: Ptx-LNCs of surface charges ranging from -35.7 to +25.3 mV were obtained with sizes between 56.2 and 75.1 nm. The diffusion of paclitaxel in mucus was improved after encapsulation in neutral or positively charged particles (p < 0.05 vs Taxol(®)). No significative difference was observed in the 2,000-5,000 PEG length for diffusion both on the 2D or 3D models. On 2D model positive or neutral LNCs interacted less with mucus. Highest efficiency of TG inclusion was observed for particles with smallest PEG length.CONCLUSIONS: The results obtained with 2D and 3D model allowed us to select the best candidates for in vivo studies (neutral or positive LNCs with smaller PEG length)

    Di-O-lauroyl-decitabine-lipid nanocapsules: toward extending decitabine activity

    Get PDF
    International audienceBackground: Acute myeloid leukemia mainly affects adult patients. Complete remission for patients younger than 60 years, who are candidates for standard induction therapy, is achieved in 60%-80% of cases. However, the prognosis is still poor for older patients, who are unfit for intensive chemotherapy, and only a few therapies are available. Hypomethylating agents, such as decitabine, are approved for such patients. The current dosing regimen consists of one administration per day, for 5 days, each 4 weeks. Methods: Here, we present the synthesis of a decitabine prodrug, combined with its encapsula-tion into a lipid-based nanocapsule formulation. Decitabine (C12) 2 was synthetized, then loaded into nanocapsules. Its stability in phosphate buffer ans human plasma was checked. Its activity was evaluated by Cell proliferation assays and cell-cycle analysis on human erythroleukemia cells. Then its pharmacokinetics was determined on a rat model. Results: Decitabine (C12) 2 was obtained with a yield of 50%. Drug loading into nanocarriers of 27.45±0.05 nm was 5.8±0.5 mg/mL. The stability of decitabine was improved and its activity on leukemia cells was not altered. Finally, pharmacokinetics studies showed a prolonged mean residence time of the drug. Conclusion: Decitabine (C12) 2 as a prodrug showed high encapsulation efficiency, a good stability in plasma with no impact on its activity on leukemia cells and improved pharmacokinetics

    Treatment of 9L Gliosarcoma in Rats by Ferrociphenol-Loaded Lipid Nanocapsules Based on a Passive Targeting Strategy via the EPR Effect

    Get PDF
    International audiencePURPOSE:To study a passive targeting strategy, via the enhanced permeability and retention effect following systemic administration of lipid nanocapsules (LNCs) loaded with ferrociphenol, FcdiOH.METHODS:Long chains of polyethylene glycol (DSPE-mPEG2000) were incorporated onto the surface of LNCs by post-insertion technique. Stealth properties of LNCs were investigated by in vitro complement consumption and macrophage uptake, and in vivo pharmacokinetics in healthy rats. Antitumour effect of FcdiOH-loaded LNCs was evaluated in subcutaneous and intracranial 9L gliosarcoma rat models.RESULTS:LNCs and DSPE-mPEG2000-LNCs presented low complement activation and weak macrophage uptake. DSPE-mPEG2000-LNCs exhibited prolonged half-life and extended area under the curve in healthy rats. In a subcutaneous gliosarcoma model, a single intravenous injection of FcdiOH-LNCs (400 μL, 2.4 mg/rat) considerably inhibited tumour growth when compared to the control. DSPE-mPEG2000-FcdiOH-LNCs exhibited a strong antitumour effect by nearly eradicating the tumour by the end of the study. In intracranial gliosarcoma model, treatment with DSPE-mPEG2000-FcdiOH-LNCs and FcdiOH-LNCs statistically improved median survival time (28 and 27.5 days, respectively) compared to the control (25 days).CONCLUSION:These results demonstrate the interesting perspectives for the systemic treatment of glioma thanks to bio-organometallic chemotherapy via lipid nanocapsules.</p
    corecore