17 research outputs found

    Etude des processus métaboliques, écologiques et biogéochimiques contrÎlant le fractionnement isotopique du Hg chez les mammifÚres marins de l'Arctique

    Get PDF
    Depuis la découverte de processus de dépÎts massifs de Hg (AMDE), l'Arctique est devenue une région clé dans la compréhension du cycle global du Hg. L'impact sur la santé humaine de ce polluant dépend non seulement de sa concentration mais aussi et surtout de sa forme chimique. En particulier, le monométhylmercure (MMHg) est une puissante neurotoxine qui atteint des concentrations élevées chez les prédateurs de l'Arctique du fait de ses propriétés de bioaccumulation et de bioamplification dans la chaine alimentaire. La compréhension des mécanismes à l'origine de la formation du MMHg (méthylation) et de sa dégradation (déméthylation) est primordiale pour caractériser son devenir et son impact dans les milieux aquatiques. Nous présentons ici une étude environnementale effectuée sur des tissus biologiques prélevés sur trois espÚces emblématiques de l'Arctique : le phoque annelé (Pusa hispida), la baleine beluga (Delphinapterus leucas) et l'ours polaire (Ursus Maritimus). L'analyse de leurs compositions isotopiques en Hg montre simultanément un fractionnement dépendant (MDF, d202Hg) et indépendant de la masse (MIF, delta199Hg). Alors que les variations en d202Hg semblent largement expliquées par des processus métaboliques internes de détoxification/accumulation, la tendance temporelle (1988-2002, Pusa hispida) et le gradient latitudinal (60°N-71°N, Delphinapterus leucas) observés pour le delta199Hg reflÚtent vraisemblablement l'influence de l'évolution et de la distribution de la banquise sur le cycle biogéochimique du Hg en Arctique. Dans la seconde partie de cette thÚse de doctorat, nous développons une approche moléculaire novatrice et prometteuse permettant de déterminer pour la premiÚre fois la composition isotopique des atomes de Hg et de carbone contenus dans la molécule de MMHg pour les échantillons biologiques. Ces premiÚres mesures offrent des perspectives prometteuses pour tracer l'origine du MMHg dans les milieux aquatiques.Since the discovery of atmospheric Hg depletion events (AMDE) in the Arctic, the Polar Regions have become key in understanding the Hg global cycle. The impact of Hg on human health depends on both Hg concentration and chemical form. In particular, monomethylmercury (MMHg) is a potent neurotoxin. High MMHg concentrations are observed in Arctic top predators due to bioaccumulation and biomagnification processes in the food webs. Hence, the characterization of the transformations leading to the formation (methylation) and the degradation (demethylation) of MMHg is of great concern to assess its fate and impact in aquatic ecosystems. In this context, we present an environmental study on three Arctic bio-indicators: the ringed seal (Pusa hispida), the beluga whale (Delphinaperus leucas) and the polar bear (Ursus maritimus). Hg isotope analysis of the bio-indicator liver tissues show both mass dependent isotope fractionation (MDF, delta202Hg) and mass independent fractionation (MIF, delta199Hg). While the changes in d202Hg are widely linked to in vivo metabolic processes, the time trend (1988-2002, Pusa hispida) and the latitudinal gradient (60°N-71°N, Delphinaperus leucas) observed for ?199Hg signatures suggests the influence of sea ice cover on the Arctic biogeochemical Hg cycle. In a second part of this dissertation, we propose a novel and promising molecular approach with the first measurements of the isotopic compositions of Hg and carbon on the MMHg molecule in biological samples. These results are very promising for tracing MMHg origin in aquatic environments

    Are Cu isotopes a useful tool to trace metal sources and processes in acid mine drainage (AMD) context?

    Get PDF
    In the South-West Europe (Iberian Pyrite Belt), acid mine drainage (AMD) processes are especially problematic because they affect the environmental quality of watersheds, restricting the use of surface water. Recent studies have shown that Cu isotopes are fractionated during the oxidative dissolution of primary sulfide minerals and could be used to trace metal cycling. However the chemistry of Cu in such environment is complex because Cu is redistributed within numerous secondary minerals and strongly dependent on the hydroclimatic conditions that control key parameters (pH, redox conditions). Finally, it remains difficult to compare the various field studies and deliver some strong general tendencies because of these changing conditions. For these reasons, concerted studies on Cu isotopes fractionation in waters impacted by AMD may help to reveal the sources and transport pathways of this important pollutant. To address this issue, we used a representative scenario of strong contamination by AMD in the Iberian Pyrite Belt (SW Spain), the Cobica River. The aim of our study is to measure the Cu isotopes signature in the waters (river, mine lake, water draining waste) of the small Cobica River system (Huelva, Spain), sampled during a short period (8 h) to avoid any change in the hydro-climatic conditions. This provided an instantaneous image of the isotopic Cu signature in a small mining systems and helped us to constrain both the processes affecting Cu isotopes and their use a potential tracer of metals in contaminated environments.This work was supported by the french national programme EC2CO Biohefect/Ecodyn//Dril/MicrobiEen (INSU/CNRS, France), the Paul Sabatier University (France) and the Department of Mining, Mechanical, Energetic and Construction Engineering of the University of Huelva (Spain)

    Dimethomorph degradation in vineyards examined by isomeric and isotopic fractionation

    No full text
    International audienceKnowledge of the degradation extent and pathways of fungicides in the environment is scarce. Fungicides may have isomers with distinct fungal-control efficiency, toxicity and fate in the environment, requiring specific approaches to follow up the degradation of individual isomers. Here we examined the degradation of the widely used fungicide dimethomorph (DIM) in a vineyard catchment using ratios of carbon stable isotopes (ÎŽ13C) and E/Z isomer fractionation (IF(Z)). In a microcosm laboratory experiment, DIM degradation half-life in soil was 20 ± 3 days, and was associated with significant isomeric (ΔIF(Z) = +30%) and isotopic (Δή13C up to 7‰) fractionation. This corresponds to an isomer enrichment factor of ΔIR = −54 ± 6%, suggesting isomer selectivity and similar carbon stable isotopic fractionation values of ΔDIM-(Z) = −1.6 ± 0.2‰ and ΔDIM-(E) = −1.5 ± 0.2‰. Isomeric and isotopic fractionation values were used to estimate DIM degradation in topsoil and transport in a vineyard catchment over two wine-growing seasons. DIM concentrations following DIM application were up to 3 ÎŒg g−1 in topsoil and 29 ÎŒg L−1 in runoff water at the catchment outlet. Accordingly, the IF(Z) and ÎŽ13C values of DIM in soil were similar to those observed in DIM commercial formulations. The gradual enrichments in DIM-(Z) and 13C of the residual DIM in soil indicated DIM biodegradation over time. DIM biodegradation estimated based on E/Z isomer and carbon stable isotope ratios in topsoil and runoff water ranged from 0% after DIM application up to 100% at the end of the wine-growing season. DIM biodegradation was overestimated compared to conventional approaches relying on DIM mass balance, field concentrations and half-lives. Altogether, our study highlights the usefulness of combining carbon stable isotopes, E/Z isomers and classical approaches to estimate fungicide degradation at the catchment scale, and uncovers difficulties in using laboratory-derived values in field studies

    Do rainfall characteristics affect the export of copper, zinc and synthetic pesticides in surface runoff from headwater catchments?

    No full text
    International audienceRainfall and runoff characteristics may influence off-site export of pesticides into downstream aquatic ecosystems. However, the relationship between rainfall characteristics and pesticide export from small headwater catchments remains elusive due to confounding factors including the application dose and timing and the variation of pesticide stocks in soil. Here we examined the impact of rainfall characteristics on the export of copper (Cu), zinc (Zn) and 12 legacy and currently used synthetic pesticides in surface runoff from a headwater vineyard catchment. Cluster analysis of rainfall intensity, depth and duration of 78 events revealed four distinct rainfall categories, i.e., Small, Long, Moderate and Intense (p 0.05). In contrast, event loads of both dissolved and solid-bound Cu and Zn significantly differed among rainfall categories (p < 0.001). Rainfall depth and intensity significantly correlated with both Cu and Zn loads in runoff (ρs = 0.33 to 0.92, p < 0.002), and might be the main drivers of Cu and Zn export at the catchment scale. In contrast, rainfall depth, intensity or duration did not influence the loads of synthetic pesticides in runoff, even when weekly variations of pesticide stocks in the soil were accounted for. However, intense rainfall-runoff events, that can fragment soil, may control the export of persistent and hydrophobic legacy pesticides stocks in the soil, such as simazine and tetraconazole. Our results show that rainfall characteristics controlled the off-site export of Cu, Zn and legacy synthetic pesticides in a small headwater catchment, whereas the application timing drove the export of currently used synthetic pesticides in runoff. We anticipate our results to be a preliminary step to forecast the influence of regional rainfall patterns on the export of both metallic and synthetic pesticides by surface runoff from small agricultural headwater catchments

    Direct and indirect photodegradation of atrazine and S -metolachlor in agriculturally impacted surface water and associated C and N isotope fractionation

    No full text
    International audienceKnowledge of direct and indirect photodegradation of pesticides and associated isotope fractionation can help to assess pesticide degradation in surface waters

    Hg-Stable Isotope Variations in Marine Top Predators of the Western Arctic Ocean

    No full text
    International audienceRecent studies on mercury (Hg)-stable isotopes in Alaskan seabird eggs and ringed seal livers illustrated the control of sea ice cover on marine methyl-Hg photochemistry. Here, complementary marine mammal tissues have been analyzed to document variations in Hg-, carbon (C)-, and nitrogen (N)-stable isotope compositions of Arctic marine food webs. Hg-stable isotope ratios were measured in liver samples of 55 beluga whales (Delphinapterus leucas) and 15 polar bears (Ursus maritimus) collected since 1990. Large variations in ÎŽ202Hg (≈2.1‰) and Δ199Hg (≈1.7‰) are observed between species and within species stocks covering the Gulf of Alaska-Bering Sea-Arctic Ocean regions. Polar bears, mainly feeding on ringed seal (ÎŽ15N shift of 4.2‰), show identical liver Δ199Hg of 0.5‰, confirming the absence of metabolic mass-independent fractionation, and 0.33 ± 0.11‰ enrichment in heavy Hg isotopes. Beluga whale liver total Hg concentrations increase with age, reflecting lifetime bioaccumulation, while Hg speciation shifts to inorganic Hg with age as a result of hepatic methyl-Hg breakdown. Δ200Hg variations in biota show a small, 0.1‰ decrease from North Pacific Ocean to Arctic Ocean habitats, suggesting atmospheric Hg deposition to be important in the Pacific and terrestrial Hg inputs to dominate in the Arctic Ocean. Similar to seabird eggs, a consistent south to north gradient in Δ199Hg baseline is seen in mammal liver tissues, confirming sea ice cover as a control factor on marine Hg photoreduction and Δ199Hg. Arctic Ocean beluga whales have near zero Δ199Hg, indicating that terrestrial Hg and in-situ-produced methyl-Hg are not measurably photoreduced in the Arctic Ocean before entering the marine food we

    Multifractal behaviour of long-term karstic discharge fluctuations

    No full text
    International audienceKarstic watersheds are highly complex hydrogeological systems that are characterized by a multiscale behaviour corresponding to the different pathways of water in these systems. The main issue of karstic spring discharge fluctuations consists in the presence and the identification of characteristic time scales in the discharge time series. To identify and characterize these dynamics, we acquired, for many years at the outlet of two karstic watersheds in South of France, discharge data at 3-mn, 30-mn and daily sampling rate. These hydrological records constitute to our knowledge the longest uninterrupted discharge time series available at these sampling rates. The analysis of the hydrological records at different levels of detail leads to a natural scale analysis of these time series in a multifractal framework. From a universal class of multifractal models based on cascade multiplicative processes, the time series first highlights two cut-off scales around 1 and 16h that correspond to distinct responses of the aquifer drainage system. Then we provide estimates of the multifractal parameters α and C 1 and the moment of divergence q D corresponding to the behaviour of karstic systems. These results constitute the first estimates of the multifractal characteristics of karstic spingflows based on 10years of high-resolution discharge time series and should lead to several improvements in rainfall-karstic springflow simulation models

    Association of a Specific Algal Group with Methylmercury Accumulation in Periphyton of a Tropical High-Altitude Andean Lake

    No full text
    International audiencePeriphyton relevance for methylmercury (MeHg) production and accumulation are now well known in aquatic ecosystems. Sulfate-reducing bacteria and other microbial groups were identified as the main MeHg producers, but the effect of periphyton algae on the accumulation and transfer of MeHg to the food web remains little studied. Here we investigated the role of specific groups of algae on MeHg accumulation in the periphyton of Schoenoplectus californicus ssp. (Totora) and Myriophyllum sp. in Uru Uru, a tropical high-altitude Bolivian lake with substantial fishing and mining activities accruing around it. MeHg concentrations were most strongly related to the cell abundance of the Chlorophyte genus Oedogonium (r2 = 0.783, p = 0.0126) and to no other specific genus despite the presence of other 34 genera identified. MeHg was also related to total chlorophyll-a (total algae) (r2 = 0.675, p = 0.0459), but relations were more significant with chlorophyte cell numbers, chlorophyll-b (chlorophytes), and chlorophyll-c (diatoms and dinoflagellates) (r2 = 0.72, p = 0.028, r2 = 0.744, p = 0.0214, and r2 = 0.766, p = 0.0161 respectively). However, Oedogonium explains most variability of chlorophytes and chlorophyll-c (r2 = 0.856, p = &lt; 0.001 and r2 = 0.619, p = 0.002, respectively), suggesting it is the most influential group for MeHg accumulation and periphyton algae composition at this particular location and given time
    corecore