111 research outputs found

    Large-scale combinatorial deorphanization of Platynereis neuropeptide GPCRs.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Neuropeptides, representing the largest class of neuromodulators, commonly signal by G-protein-coupled receptors (GPCRs). While the neuropeptide repertoire of several metazoans has been characterized, many GPCRs are orphans. Here, we develop a strategy to identify GPCR-peptide pairs using combinatorial screening with complex peptide mixtures. We screened 126 neuropeptides against 87 GPCRs of the annelid Platynereis and identified ligands for 19 receptors. We assigned many GPCRs to known families and identified conserved families of achatin, FMRFamide, RGWamide, FLamide, and elevenin receptors. We also identified a ligand for the Platynereis ortholog of vertebrate thyrotropin-releasing hormone (TRH) receptors, revealing the ancient origin of TRH-receptor signaling. We predicted ligands for several metazoan GPCRs and tested predicted achatin receptors. These receptors were specifically activated by an achatin D-peptide, revealing a conserved mode of activation. Our work establishes an important resource and provides information about the complexity of peptidergic signaling in the urbilaterian.on assays. We also thank Elizabeth Williams for comments on the manuscript. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ European Research Council Grant Agreement 260821. P.B. is supported by the International Max Planck Research School (IMPRS) ‘‘From Molecules to Organism

    Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin of these transmitter systems remain unclear. RESULTS: Using phylogenetic analysis and receptor pharmacology, here we have established that norepinephrine, octopamine, and tyramine receptors coexist in some marine invertebrates. In the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid), we have identified and pharmacologically characterized adrenergic α1 and α2 receptors that coexist with octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors. These receptors represent the first examples of adrenergic receptors in protostomes. In the deuterostome Saccoglossus kowalevskii (a hemichordate), we have identified and characterized octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors, representing the first examples of these receptors in deuterostomes. S. kowalevskii also has adrenergic α1 and α2 receptors, indicating that all three signaling systems coexist in this animal. In phylogenetic analysis, we have also identified adrenergic and tyramine receptor orthologs in xenacoelomorphs. CONCLUSIONS: Our results clarify the history of monoamine signaling in bilaterians. Given that all six receptor families (two each for octopamine, tyramine, and norepinephrine) can be found in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes, all six receptors must have coexisted in the last common ancestor of the protostomes and deuterostomes. Adrenergic receptors were lost from most insects and nematodes, and tyramine and octopamine receptors were lost from most deuterostomes. This complex scenario of differential losses cautions that octopamine signaling in protostomes is not a good model for adrenergic signaling in deuterostomes, and that studies of marine animals where all three transmitter systems coexist will be needed for a better understanding of the origin and ancestral functions of these transmitters.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ European Research Council Grant Agreement 260821. PB is supported by the International Max Planck Research School (IMPRS) “From Molecules to Organisms.

    Think small

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The tadpole larva of a sea squirt is only the second animal to have its entire nervous system mapped out, and the results confirm that there is still much to learn from the smallest brains

    Myoinhibitory peptide regulates feeding in the marine annelid Platynereis

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: During larval settlement and metamorphosis, marine invertebrates undergo changes in habitat, morphology, behavior and physiology. This change between life-cycle stages is often associated with a change in diet or a transition between a non-feeding and a feeding form. How larvae regulate changes in feeding during this life-cycle transition is not well understood. Neuropeptides are known to regulate several aspects of feeding, such as food search, ingestion and digestion. The marine annelid Platynereis dumerilii has a complex life cycle with a pelagic non-feeding larval stage and a benthic feeding postlarval stage, linked by the process of settlement. The conserved neuropeptide myoinhibitory peptide (MIP) is a key regulator of larval settlement behavior in Platynereis. Whether MIP also regulates the initiation of feeding, another aspect of the pelagic-to-benthic transition in Platynereis, is currently unknown. RESULTS: Here, we explore the contribution of MIP to the regulation of feeding behavior in settled Platynereis postlarvae. We find that in addition to expression in the brain, MIP is expressed in the gut of developing larvae in sensory neurons that densely innervate the hindgut, the foregut, and the midgut. Activating MIP signaling by synthetic neuropeptide addition causes increased gut peristalsis and more frequent pharynx extensions leading to increased food intake. Conversely, morpholino-mediated knockdown of MIP expression inhibits feeding. In the long-term, treatment of Platynereis postlarvae with synthetic MIP increases growth rate and results in earlier cephalic metamorphosis. CONCLUSIONS: Our results show that MIP activates ingestion and gut peristalsis in Platynereis postlarvae. MIP is expressed in enteroendocrine cells of the digestive system suggesting that following larval settlement, feeding may be initiated by a direct sensory-neurosecretory mechanism. This is similar to the mechanism by which MIP induces larval settlement. The pleiotropic roles of MIP may thus have evolved by redeploying the same signaling mechanism in different aspects of a life-cycle transition.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Counci

    An ancient FMRFamide-related peptide-receptor pair induces defence behaviour in a brachiopod larva

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Animal behaviour often comprises spatially separated sub-reactions and even ciliated larvae are able to coordinate sub-reactions of complex behaviours (metamorphosis, feeding). How these sub-reactions are coordinated is currently not well understood. Neuropeptides are potential candidates for triggering larval behaviour. However, although their immunoreactivity has been widely analysed, their function in trochozoan larvae has only been studied for a few cases. Here, we investigate the role of neuropeptides in the defence behaviour of brachiopod larvae. When mechanically disturbed, the planktonic larvae of Terebratalia transversa protrude their stiff chaetae and sink down slowly. We identified endogenous FLRFamide-type neuropeptides (AFLRFamide and DFLRFamide) in T. transversa larvae and show that the protrusion of the chaetae as well as the sinking reaction can both be induced by each of these peptides. This also correlates with the presence of FLRFamidergic neurons in the apical lobe and adjacent to the trunk musculature. We deorphanized the AFLRFamide/DFLRFamide receptor and detected its expression in the same tissues. Furthermore, the ability of native and modified FLRFamide-type peptides to activate this receptor was found to correspond with their ability to trigger behavioural responses. Our results show how FLRFamide-type neuropeptides can induce two coherent sub-reactions in a larva with a simple nervous system.This research was supported by the FP7-PEOPLE-2012-ITN grant no. 317172 ‘NEPTUNE’ and received further support by the DFG—Deutsche Forschungsgemeinschaft to G.J. (Reference no. JE 777/3-1

    Origins of eukaryotic excitability

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordAll living cells interact dynamically with a constantly changing world. Eukaryotes in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behavior in eukaryotes, including directional movement, active feeding, mating, or responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane, and the relocation of chemiosmotic ATP synthesis to mitochondria that liberated the plasma membrane for more complex electrical signaling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes.European Commissio

    Object-based representation and analysis of light and electron microscopic volume data using Blender

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Rapid improvements in light and electron microscopy imaging techniques and the development of 3D anatomical atlases necessitate new approaches for the visualization and analysis of image data. Pixel-based representations of raw light microscopy data suffer from limitations in the number of channels that can be visualized simultaneously. Complex electron microscopic reconstructions from large tissue volumes are also challenging to visualize and analyze. RESULTS: Here we exploit the advanced visualization capabilities and flexibility of the open-source platform Blender to visualize and analyze anatomical atlases. We use light-microscopy-based gene expression atlases and electron microscopy connectome volume data from larval stages of the marine annelid Platynereis dumerilii. We build object-based larval gene expression atlases in Blender and develop tools for annotation and coexpression analysis. We also represent and analyze connectome data including neuronal reconstructions and underlying synaptic connectivity. CONCLUSIONS: We demonstrate the power and flexibility of Blender for visualizing and exploring complex anatomical atlases. The resources we have developed for Platynereis will facilitate data sharing and the standardization of anatomical atlases for this species. The flexibility of Blender, particularly its embedded Python application programming interface, means that our methods can be easily extended to other organisms.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement 260821

    Whole-head recording of chemosensory activity in the marine annelid Platynereis dumerilii

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: The datasets supporting the conclusions of this article, as well as videos showing examples of calcium activity, have been provided as the electronic supplementary material. Raw calcium recordings are available on demand.Chemical detection is key to various behaviours in both marine and terrestrial animals. Marine species, though highly diverse, have been underrepresented so far in studies on chemosensory systems, and our knowledge mostly concerns the detection of airborne cues. A broader comparative approach is therefore desirable. Marine annelid worms with their rich behavioural repertoire represent attractive models for chemosensation. Here, we study the marine worm Platynereis dumerilii to provide the first comprehensive investigation of head chemosensory organ physiology in an annelid. By combining microfluidics and calcium imaging, we record neuronal activity in the entire head of early juveniles upon chemical stimulation. We find that Platynereis uses four types of organs to detect stimuli such as alcohols, esters, amino acids and sugars. Antennae are the main chemosensory organs, compared to the more differentially responding nuchal organs or palps. We report chemically evoked activity in possible downstream brain regions including the mushroom bodies (MBs), which are anatomically and molecularly similar to insect MBs. We conclude that chemosensation is a major sensory modality for marine annelids and propose early Platynereis juveniles as a model to study annelid chemosensory systems.FP7 Marie Curie Initial Training NetworkEuropean Molecular Biology LaboratoryDeutsche Forschungsgemeinschaf

    The neuropeptide complement of the marine annelid Platynereis dumerilii.

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: The marine annelid Platynereis dumerilii is emerging as a powerful lophotrochozoan experimental model for evolutionary developmental biology (evo-devo) and neurobiology. Recent studies revealed the presence of conserved neuropeptidergic signaling in Platynereis, including vasotocin/neurophysin, myoinhibitory peptide and opioid peptidergic systems. Despite these advances, comprehensive peptidome resources have yet to be reported. RESULTS: The present work describes the neuropeptidome of Platynereis. We established a large transcriptome resource, consisting of stage-specific next-generation sequencing datasets and 77,419 expressed sequence tags. Using this information and a combination of bioinformatic searches and mass spectrometry analyses, we increased the known proneuropeptide (pNP) complement of Platynereis to 98. Based on sequence homology to metazoan pNPs, Platynereis pNPs were grouped into ancient eumetazoan, bilaterian, protostome, lophotrochozoan, and annelid families, and pNPs only found in Platynereis. Compared to the planarian Schmidtea mediterranea, the only other lophotrochozoan with a large-scale pNP resource, Platynereis has a remarkably full complement of conserved pNPs, with 53 pNPs belonging to ancient eumetazoan or bilaterian families. Our comprehensive search strategy, combined with analyses of sequence conservation, also allowed us to define several novel lophotrochozoan and annelid pNP families. The stage-specific transcriptome datasets also allowed us to map changes in pNP expression throughout the Platynereis life cycle. CONCLUSION: The large repertoire of conserved pNPs in Platynereis highlights the usefulness of annelids in comparative neuroendocrinology. This work establishes a reference dataset for comparative peptidomics in lophotrochozoans and provides the basis for future studies of Platynereis peptidergic signaling.This work was supported by Max Planck Society Sequencing Grant M.IF.A.ENTW8050 to GJ. The research leading to these results was supported by the European Research Council under European Union Seventh Framework Program FP7/2007–2013 and European Research Council Grant Agreement 260821

    Inter-individual stereotypy of the Platynereis larval visual connectome

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Developmental programs have the fidelity to form neural circuits with the same structure and function among individuals of the same species. It is less well understood, however, to what extent entire neural circuits of different individuals are similar. Previously, we reported the neuronal connectome of the visual eye circuit from the head of a Platynereis dumerilii larva (Randel et al., 2014). We now report a full-body serial section transmission electron microscopy (ssTEM) dataset of another larva of the same age, for which we describe the connectome of the visual eyes and the larval eyespots. Anatomical comparisons and quantitative analyses of the two circuits reveal a high inter-individual stereotypy of the cell complement, neuronal projections, and synaptic connectivity, including the left-right asymmetry in the connectivity of some neurons. Our work shows the extent to which the eye circuitry in Platynereis larvae is hard-wired.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/European Research Council Grant Agreement 260821.European Research Council (ERC): Grant Agreement 260821, Gaspar Jekel
    • …
    corecore