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Animal behaviour often comprises spatially separated sub-reactions and even

ciliated larvae are able to coordinate sub-reactions of complex behaviours

(metamorphosis, feeding). How these sub-reactions are coordinated is cur-

rently not well understood. Neuropeptides are potential candidates for

triggering larval behaviour. However, although their immunoreactivity has

been widely analysed, their function in trochozoan larvae has only been

studied for a few cases. Here, we investigate the role of neuropeptides in the

defence behaviour of brachiopod larvae. When mechanically disturbed,

the planktonic larvae of Terebratalia transversa protrude their stiff chaetae and

sink down slowly. We identified endogenous FLRFamide-type neuropeptides

(AFLRFamide and DFLRFamide) in T. transversa larvae and show that the pro-

trusion of the chaetae as well as the sinking reaction can both be induced by

each of these peptides. This also correlates with the presence of FLRFamidergic

neurons in the apical lobe and adjacent to the trunk musculature. We deorpha-

nized the AFLRFamide/DFLRFamide receptor and detected its expression in

the same tissues. Furthermore, the ability of native and modified FLRFamide-

type peptides to activate this receptor was found to correspond with their

ability to trigger behavioural responses. Our results show how FLRFamide-

type neuropeptides can induce two coherent sub-reactions in a larva with a

simple nervous system.

provided by Open Resear
1. Background
Planktonic organisms have evolved different strategies to defend themselves from

predation [1–4]. Morphological characters such as shells, spines or chaetae [5–7]

and behaviours such as vertical migration, contraction, active fleeing or passive

sinking [8–11] can help to cope with certain predators. This is especially true

for ciliated larvae that do not possess an elaborated nervous system and face

the challenge of remaining in the water column for dispersal while avoiding pre-

dation. The startle behaviour of several planktonic annelid and brachiopod larvae

has often been described as a defence strategy, where they stop swimming and

protrude long and pointed chaetae [12–16]. The co-occurring sub-reactions of

spreading the chaetae and stopping swimming take place in spatially separated

tissues: the internal trunk musculature and the ciliated apical edge, respectively.

Both sub-reactions have to be coordinated within the framework of a larval ner-

vous system. One mechanism to achieve coordination of different reactions could

be the use of neuropeptides as signalling molecules. Neuropeptides are known to

influence many behaviours and can be crucial in the regulation and coordination

of spatially or temporally separated coherent sub-reactions. During insect ecdysis,

for example, the eclosion hormone and ecdysis-triggering hormone both act as a

form of master-regulator on different peripheral as well as central targets, and

each coordinates several sub-reactions [17–20]. Another example is neuropeptide
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Y, which stimulates appetitive as well as consummatory

ingestive behaviour in the Siberian hamster [21].

The influence of neuropeptides on the behaviour of tro-

chozoan larvae has only been demonstrated in a few studies,

which show that neuropeptides can trigger settlement and

influence their ciliary-based locomotion [22–25]. One of the

neuropeptides that has been shown to influence ciliary beating

of different trochozoan larvae is FMRFamide [22,23,25]. FMRF-

amide-immunoreactivity is widely used as a marker for neural

substructures in morphological studies [26,27]. Furthermore,

while FMRFamide-related peptides (FaRPs) have been ident-

ified in many metazoans, their phylogenetic relationships are

difficult to infer [28–30]. For the comparison of larval nervous

systems, it is therefore of crucial interest to understand the

functional role of a neuropeptide and its versatility to trigger

larval behaviours.

While experimental studies in trochozoan larvae are lim-

ited, the physiological effect of FMRFamide-like peptides has

been intensively investigated in adult trochozoans, where it

has been found to have various effects on muscular activity

[31–37]. Depending on the species, it can increase or decrease

the heartbeat [31], cause contractions or relaxation of soma-

tic muscles [32–34] or modulate the effects of classical

neurotransmitters on somatic muscles [36,37]. Many immuno-

histochemical analyses on trochozoan larvae of different clades

show FMRFamide-like immunoreactivity associated with

muscles or ciliary bands [38–46], but experimental data are

most often missing and functional studies are restricted to

mollusc and annelid larvae [22,23,25]. Despite the recurring

association of FMRFamide-like peptides with musculature in

trochozoans, only one study has shown an effect of FMRF-

amide on the musculature of a trochozoan larva, which

describes the induction of frequent contractions of the ciliated

velum of Tritia obsoleta veliger larvae [22].

Since neuropeptides can act over longer distances [47], the

localization of the neuropeptide receptor provides more infor-

mation about the tissues actually affected than the peptide

secreting cells that are labelled with the peptide antibodies.

The majority of neuropeptide receptors are G-protein-coupled

receptors (GPCRs), with a few exceptions like insulin receptors

or peptide-gated ion channels [29,48,49]. Three different recep-

tors for FMRFamide have been deorphanized in invertebrates

so far. One is an FMRFamide-gated amiloride-sensitive

Naþ channel (FaNaCh) that has been identified in molluscs

[50–52]. The two other receptors belong to two different

groups of neuropeptide GPCRs. One of these FMRFamide-

GPCRs was identified in the fruit fly Drosophila melanogaster
[53,54] and the other one in the annelid Platynereis dumerilii
[49]. This stands in contrast to many cases in which homologous

ligands also activate homologous receptors [49,55,56].

To expand the taxon sampling of functional neuropeptide

studies in lophotrochozoans and to better understand the role

of the widely used neuropeptide marker FMRFamide, we

investigated the effects of an FaRP on the behaviour of a bra-

chiopod larva. Recent research on brachiopods has revealed

important insights in evolutionary developmental biology

[57–59] and descriptions of their nervous system include

the use of FMRFamide antibodies [60,61] and classical neuronal

markers [62,63], as well as other molecular techniques [64].

Here, we show that the endogenous FLRFamide-like peptides

induce the characteristic defence behaviour in the larvae of

the brachiopod Terebratalia transversa, which consists of a down-

ward sinking and the protrusion of their chaetae. Behavioural
experiments and receptor deorphanization, in combination

with immunohistochemistry, and in situ hybridization show

that both sub-reactions can be specifically triggered by a

single peptide acting via an ancient FaRP receptor. Together

our results show how a single neuropeptide can trigger two

coherent reactions and integrate evolutionary novelties such

as trochozoan chaetae [57] into the T. transversa larval defence

behaviour.
2. Material and methods
2.1. Collection and rearing of Terebratalia transversa

larvae
Adult T. transversa (Sowerby, 1846) were collected in January

2015 and 2016 by dredging at approximately 50–100 m

depth close to the University of Washington’s Friday Harbor

Laboratories, San Juan Islands, WA, USA. Larvae were

obtained according to Stricker & Reed [65] by artificial fertiliza-

tion and kept at 8–108C. Two different types of larvae were

used for the experiments: early larvae (2 days post-fertilization)

before chaetal formation and late larvae (4–5 days post-

fertilization) with clearly developed mantle lobes and long

chaetae. For immunohistochemistry and in situ hybridization,

larvae were relaxed in 7.8% MgCl2-6H2O in distilled water for

10–15 min, fixed in 4% methanol-free formaldehyde in sea-

water for 1 h, subsequently washed in PBS þ 0.1% Tween

and transferred into 100% methanol for storage at 2208C.

2.2. Bioinformatics
The previously published transcriptome of T. transversa
(SRX1307070) was searched for peptide precursor and receptor

candidates using BLAST. Publicly available FMRFamide-

like precursor sequences from NCBI were used as reference

sequences, and the resulting candidates were checked for

signal peptides, cleavage sites and amidation sites. Neuropep-

tide precursor genes were also searched in the transcriptome of

Novocrania anomala (SRX1343816). As reference sequences for

the peptide receptor, previously published datasets [29,49]

were used as well as transcriptomes of Xenoturbella bocki
(SRX1343818), Nemertoderma westbladi (SRX1343819), Meara sti-
chopi (SRX1343814) and Halicryptus spinulosus (SRX1343820)

to obtain additional sequences. The candidates were com-

pared using the software CLANS [66], with a p-value cutoff

of 1 � 10270. Sequences that were strongly connected in the

cluster map were aligned with CLUSTAL X v. 2.1 [67], non-con-

served stretches were deleted manually, and the best fitting

amino acid substitution matrix was determined with MODEL-

GENERATOR v. 0.85 [68]. The final phylogenetic analysis was

calculated with PHYML v. 3.0 [69] with 500 bootstrap replicates

and visualized with FIGTREE v. 1.4.3 (http://tree.bio.ed.ac.uk/

software/figtree).

2.3. Behavioural assays
The reaction of larvae to synthetic peptides (GenScript) that

were predicted from the prepropeptide sequence were tested

and compared with the reactions to peptides with non-native

modifications. Freely swimming larvae were exposed to differ-

ent concentrations of peptides in 4-well and 6-well plates (1 ml

and 5 ml total volume per well, respectively), and their
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Figure 1. Defence reaction and FLRFamide prepropeptide of the T. transversa larvae. (a – c) sketch, (d,e) SEM photographs, anterior up, ( f ) sketch. (a) Larva in
relaxed stance during normal swimming; (b) non-contracted larva that begins to spread its chaetae; (c) larva in defence stance with outspread chaetae; (d ) non-
contracted competent larva; (e) contracted competent larva with outspread chaetae; ( f ) schematic of T. transversa FLRFamide prepropeptide. al, anterior lobe; ml,
mantle lobe; pl, pedicle lobe; vm, ciliated ventral midline. Scale bar, 50 mm.
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reactions were observed under a stereomicroscope. To deter-

mine the efficiency of the native and modified peptides, the

larvae were tested for the necessary minimum concentration

at which they fully contracted and spread their chaetae,

using 30–100 larvae in each test. To get an estimation of the

peptide concentration that was necessary to induce a complete

contraction, the larvae were initially exposed to 50 nmol l21 of

the respective peptide and the concentration was then

increased stepwise until the larvae fully contracted or a concen-

tration of 50 mmol l21 was reached as an upper cutoff. Larvae

were considered fully contracted when their chaetae were

spread in all directions (figure 1c) and when they did not

further increase in contraction after an increase in peptide con-

centration, or after the use of the most sensitive peptide. To test

the influence of the peptides on the vertical distribution of

larvae in a water column, freely swimming larvae (50–100

per treatment) were exposed to peptides in transparent 4.5 ml

cuvettes. About 60 s after addition of the peptides, the larvae

were recorded with a digital camera (DMK 31AU03 camera,

The Imaging Source) in a darkened box with artificial top-illu-

mination. All experiments were repeated at least once with

a different batch of larvae from another fertilization and the

outcome was averaged. Control animals were exposed to

DMSO only.

2.4. Receptor deorphanization
For the receptor deorphanization, the procedure was used as

described by Bauknecht & Jékely [49]: full-length open reading

frames of the receptor candidate sequences were amplified by

PCR from cDNA of mixed larval stages. The forward primers

included a 50 attachment consisting of a spacer, an EcoR1 or

BamH1 restriction site and a Kozak sequence and the reverse

primers included a 50 attachment consisting of a spacer and a

Not1 restriction site (see the electronic supplementary material

for primer sequences). The amplified products were cut with

the corresponding restriction enzymes, cloned into

pcDNA3.1(þ) mammalian expression vector (Sigma-Aldrich),

sequenced from both ends with a T7 forward and a bGH
reverse primer, and transfected into CHO-K1 cells together

with a calcium-sensitive luminescent apoaequorin-GFP

fusion protein encoding plasmid (G5A) and a promiscuous

Ga-16 protein encoding plasmid. After 2 days, Coelenterazine

h (Promega, Madison, WI, USA) was added and incubated

with the cells for 2 h. The luminescence response of the trans-

fected cells was measured in a plate reader (BioTek Synergy

Mx or Synergy H4, BioTek, Winooski, USA) over 45 s after

addition of the neuropeptides. The response of the cells to

1 mM histamine was used as a general control in each plate.

All measurements for the dose–response curves were made

twice with different cell passages. Dose–response curves

were calculated using PRISM 6 (GraphPad, La Jolla, USA) and

normalized against the upper plateau values (100% activation).

2.5. In situ hybridization
FLRFamide precursor and receptor sequences were amplified

by PCR and cloned into pGEM T-easy vector (Promega) for

in vitro transcription of DIG-UTP or DNP-UTP labelled RNA

probes. For tropomyosin, a previously published clone [70]

was used. The in situ hybridization protocol with an alternative

hybridization buffer is published elsewhere [71]. The protocol

from Hejnol [72] was adjusted with a proteinase K treatment

(10 mg ml21) of 8 min and with a postfixation in 3.7%

formaldehyde þ 0.2% glutaraldehyde in PBS þ 0.1% Tween

20. The hybridization buffer contained 4 mol l21 urea, 5�
SSC, 1% dextran, 1% SDS, 50 mg ml21 heparin, 50 mg ml21

single-stranded DNA (no formamide). The signal was

developed with the TSA Plus Cy3 or Cy5 kit (Perkin

Elmer) or NBT/BCIP as a substrate and detected via fluor-

escence or NBT/BCIP reflection [73] with a Leica SP5

confocal laser-scanning microscope.

2.6. Immunohistochemistry
Customized polyclonal antibodies were raised in rabbits

against CFLRFamide, coupled via a disulfide bridge to Keyhole

limpet hemocyanin (GenScriptw). Co-staining was either

http://rsob.royalsocietypublishing.org/
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done with mouse anti-acetylated a-tubulin (Sigma, T6793)

or mouse anti-actin (Seven Hills Bioreagents, LMAB-C4)

antibodies. For the staining procedure, the protocol of Conzel-

mann & Jékely [74] was used with the following adjustments:

proteinase K treatment (10 mg ml21) was done for 3–5 min,

and after the proteinase inactivation step with glycine

(2 mg ml21) the samples were incubated for 2–4 h in PBS þ
0.5% TritonX. Primary antibodies were incubated over three

nights at 48C and washed for 4–6 h with at least 10 changes

of washing medium. Secondary antibodies (Alexa 555 goat

anti-rabbit and Alexa 647 goat anti-mouse) were incubated

overnight and an additional secondary antibody (Alexa 488

goat anti-rat) without corresponding primary antibody was

included to test and subtract unspecific staining. After washing

the secondary antibodies for 4–6 h with at least 10 changes of

buffer, specimens were transferred into methanol and mounted

in Murray’s clear (2 : 1 parts benzyl benzoate : benzyl alcohol).
6

3. Results
3.1. The endogenous neuropeptides DFLRFamide and

AFLRFamide trigger the defence behaviour of
Terebratalia transversa larvae

During normal swimming, the chaetae of competent T. trans-
versa larvae rest against their pedicle lobe with their tips

forming a bundle (figure 1a). When the larvae get disturbed

(e.g. mechanical irritation with a pipette tip), they stop swim-

ming, sink down slowly and exhibit a defensive stance

by lengthwise contraction of their body to spread the four

bundles of chaetae outwards (figure 1b,c,e; electronic sup-

plementary material, Video S1). At maximal contraction,

the larvae spread their chaetae in all directions to surround

their soft body (figure 1c,e).

We identified an FLRFamide prepropeptide sequence in the

transcriptome of T. transversa. The FLRFamide precursor con-

tains a signal peptide, three copies of DFLRFamide and five

copies of AFLRFamide, partially separated by intermediate

sequences (figure 1f; see also the electronic supplementary

material for colour-coded amino acid sequence). When we

exposed larvae to synthetic FLRFamide, they contracted length-

wise, spread out their chaetae and sank down slowly. Both

predicted peptides, DFLRFamide and AFLRFamide, caused

the same behaviour. When exposed to 50–100 nmol l21

DFLRFamide, all larvae showed initial signs of contraction,

indicated by their chaetae bundles being slightly fanned out

while still pointing in a posterior direction (figure 1b,d).

About half of the larvae continued swimming while the other

half started to sink slowly towards the bottom. An increase in

peptide concentrations led to an overall increase in contraction,

resulting in a stronger spreading of the chaetae and more larvae

sinking. A maximum contraction of all larvae, with their body

being completely surrounded by chaetae, was observed at con-

centrations of 500–750 nmol l21 DFLRFamide. When we

removed the peptides by exchanging the medium with fresh

seawater, all larvae returned to normal swimming behaviour.

Continuous exposure for about 2 h led to a desensitization

and the larvae resumed normal swimming without removing

the peptides. When the larvae were desensitized by continuous

exposure to DFLRFamide, they also became insensitive to

AFLRFamide and vice versa. Desensitized larvae still showed
an initial contraction when they were disturbed, but it seemed

like they had to be disturbed more harshly than non-desensi-

tized larvae. Larvae that were exposed to DFLRFamide

concentrations below the threshold that is able to induce a

defensive behaviour (50 nmol l21) seemed to be more sensitive

than untreated ones and already contracted when slightly dis-

turbed. However, we were not able to quantify the necessary

strengths of disturbance. We also tested orthologues of AFLR-

Famide/DFLRFamide on late chaetous larvae of P. dumerilii
and Novocrania anomala (FMRFamide and YMRFamide,

respectively; see the electronic supplementary material for

N. anomala precursor sequence), but even concentrations

above 50 mmol l21 did not induce any defence reaction.

Taken together, we found that T. transversa larvae show a

sustained behaviour which is similar to their startle response

when we exposed them to one of the neuropeptides encoded

on the endogenously expressed FLRFamide precursor.

3.2. FLRFamide causes sinking of larvae independent
from the protrusion of their chaetae

One part of the defence behaviour of T. transversa larvae is a

slow downward sinking. A similar reaction can already be

observed in early larvae before they develop long chaetae.

Owing to the shape of the larvae and the lack of a clear

restriction of the prototroch, it was not possible to directly

record the ciliary beating. However, because T. transversa
larval locomotion is purely driven by ciliary beating, we

hypothesize that FLRFamide influences the ciliary move-

ment. To measure the swimming behaviour in an unbiased

manner, we recorded the position of freely swimming

larvae in vertical columns and compared it to the position

of larvae after exposure to DFLRFamide. To test the possi-

bility that the sinking is caused by an increase in the water

drag due to the protruded chaetae, we also recorded early

larvae that already express FLRFamide in the apical lobe

(electronic supplementary material, figure S1d ) but do not

possess long chaetae yet (electronic supplementary material,

figure S1e). Both stages showed a sinking behaviour that

shifted the distribution of the larvae in the water column

downwards, compared to the controls (figure 2). Early

larvae kept swimming more freely close to the bottom,

whereas late larvae usually stayed at the bottom and

moved only very slowly forward.

3.3. Modified peptides trigger the defence behaviour at
different concentration thresholds

We tested at which concentration modified peptides induce

the contraction that leads to the erection of the chaetae, with

50 mmol l21 as a cutoff for the maximum concentration

(table 1; electronic supplementary material, table S1). The

larvae were most sensitive to DFLRFamide and showed full

contraction (figure 1c,e), sinking and very slow movements

on the bottom of the dish at concentrations between 500 and

750 nmol l21 (batch dependent). Further increasing of the

concentration did not lead to an obvious increase in the reac-

tion. AFLRFamide was slightly less effective by triggering

full contraction of all larvae between 1 and 1.5 mmol l21.

The reduced peptide sequence FLRFamide was effective at

3 mmol l21. Changing the amidated C-terminal phenylalanine

to an amidated tryptophan reduced the effectiveness by

http://rsob.royalsocietypublishing.org/


!" #" $" %" &" '!"

5

15

25

35

4 8
% of larvae

!" #" $" %" &" '!"

5

15

25

35

4 8 !" #" $" %" &" '!"

5

15

25

35

4 8
% of larvae% of larvae

!" #" $" %" &" '!"

5

15

25

35

4 8
% of larvae

co
lu

m
n 

he
ig

ht
 (

m
m

)
p = 0.932 p = 0.0007p = 0.0002p = 0.05

2           6          102           6          102           6          102           6          10

10

20

30

4040

30

20

10

early larvae
control

early larvae
DFLRFamide

late larvae
control

10

20

30

40

10

20

30

40

late larvae
DFLRFamide

Figure 2. Influence of FLRFamide on the vertical distribution of early and late larvae in a water column. Horizontal red bar shows average level of swimming height,
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Table 1. Necessary peptide concentrations to evoke larval defence stance
compared to EC50 values of receptor activation.

peptide

necessary concentration
to induce full
contraction (mmol l21)

EC50 receptor
assay

DFLRFamide 0.625 26.5 nmol l21

AFLRFamide 1.5 12.4 nmol l21

FLRFamide 3 33.2 nmol l21

DFLRWamide 8.75 0.9 mmol l21
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about 10-fold, with a minimum necessary concentration of

7.5 mmol l21 for DFLRWamide or 20 mmol l21 for AFLRW-

amide. Changing the C-terminal phenylalanine to the

non-aromatic leucine only led to a very weak contraction (simi-

lar to figure 1b) in some of the larvae at 50 mmol l21

DFLRLamide, whereas 50 mmol l21 AFLRLamide gave no

reaction at all. Reducing the sequence to the three C-terminal

amino acids, LRFamide, also did not lead to any contraction,

and nor did any of the other endogenous peptides that we

tested. (A list of tested peptides is given in the electronic sup-

plementary material, table S1.) The overall most effective

versions were the ones that are encoded on the pro-peptide

sequence, DFLRFamide and AFLRFamide. The reduced

peptide FLRFamide was slightly less effective and a modifi-

cation of the amidated C-terminus reduced the effectiveness

even more.
3.4. Identification of the Terebratalia transversa
FaRP receptor

Based on BLAST e-value similarities and cluster analyses,

we tested four receptor candidates for their activation by

FLRFamide (figure 3). One candidate belongs to a cluster of
receptors that includes the deorphanized P. dumerilii FMRF-

amide receptor [49] with related sequences in all major

bilaterian groups including Xenacoelomorpha (figure 3 ‘I’;

electronic supplementary material, figure S2). The second can-

didate belongs to the luqin receptors (figure 3 ‘II’; electronic

supplementary material, figure S2). The third candidate

belongs to a group of related receptors with unknown ligand

(figure 3 ‘III’; electronic supplementary material, figure S2),

and the fourth one belongs to a group that shows similari-

ties with the Drosophila melanogaster FMRFamide and the

P. dumerilii NPY-4 receptors and is not related to the other

three receptors (figure 3 ‘IV’). Transcriptome searches for an

FMRFamide-gated ion channel (FaNaCh), which has been

identified in molluscs, did not reveal any orthologues

in T. transversa, even when using FaNaCh orthologues

that were identified in the brachiopods Lingula anatina and

Novocrania anomala.

To test whether FLRFamide is the ligand of one of these

receptors, we tested their activation by DFLRFamide in trans-

fected CHO-K1 cells. Only the candidate that is related to the

P. dumerilii FMRFamide receptor was activated by 1 mmol l21

DFLRFamide, but none of the other tested receptors. We there-

fore called this receptor the T. transversa FLRFamide receptor.

As DFLRFamide triggered the defence stance at concentrations

below 1 mmol l21 in the behavioural assay, we did not test the

negative GPCRs at higher peptide doses. We further compared

the luminescence response of FLRFamide receptor express-

ing CHO-K1 cells to 1 mmol l21 DFLRFamide, AFLRFamide,

FLRFamide, DFLRWamide and DFLRLamide (figure 4a).

The two native forms DFLRFamide and AFLRFamide led to

the highest luminescence, followed by FLRFamide in a similar

range. DFLRWamide gave a strongly decreased luminescence

and the values of DFLRLamide were barely higher than the

negative control. Dose–response curves were recorded for

DFLRFamide, AFLRFamide, FLRFamide and DFLRWamide

(figure 4b; electronic supplementary material, figure S3) and

EC50 values (half maximal effective concentration) were

determined for each peptide. AFLRFamide showed the

http://rsob.royalsocietypublishing.org/
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lowest EC50 value (1.24 � 1028 mol l21), the EC50 for DFLRF-

amide was about two times as high (2.65 � 1028 mol l21), the

one for FLRFamide was about three times higher (3.32 �
1028 mol l21) and the one for DFLRWamide was the highest

of all tested peptides (9.06 � 1027 mol l21). The EC50 values

are listed in table 1, together with the concentrations necessary

to trigger the defence stance in the behavioural assay.

After we deorphanized the FLRFamide receptor, we

tested its phylogenetic relationship to the receptors that

showed connections in the cluster analysis (figure 3 ‘I–III’).

We did not include the unrelated T. transversa orphan recep-

tor that is related to the insect FMRFamide and P. dumerilii
NPY-4 receptors (figure 3 ‘IV’). As seen in the cluster analy-

sis, the T. transversa FLRFamide receptor is directly related to

the P. dumerilii FMRFamide receptor and several orphan

receptors of other trochozoans (electronic supplementary

material, figure S2). Orthologues to these trochozoan FMRF-

amide/FLRFamide receptors were found in the insect

Nilaparvata lugens, the hemichordate Saccoglossus kowalevskii,
and the xenacoelomorph Meara stichopi. Further related
GPCRs include orphan receptors from the cephalochordate

Branchiostoma floridae, the ghost-shark Callorhinchus milii,
and the xenacoelomorphs M. stichopi and Nemertoderma
westbladi. All of these receptors form a fully supported group

of neuropeptide GPCRs with homologues in all major bilater-

ian clades that are well separated from other neuropeptide

GPCR groups (electronic supplementary material, figure S2).

In summary, we discovered that the T. transversa FLRF-

amide receptor belongs to an ancient neuropeptide receptor

group and is efficiently activated by the two peptides

AFLRFamide and DFLRFamide that are encoded on the

T. transversa prepropeptide sequence.

3.5. In situ hybridization and immunohistochemistry
show localization of peptide receptor in trunk
musculature and apical prototroch region

The FLRFamide precursor has several expression domains

within the apical lobe around the neuropile, and two domains

http://rsob.royalsocietypublishing.org/
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on the ventral side at the anterior border of the mantle lobe

(figure 5a–c; electronic supplementary material, figure S1b,c).

The number of domains in the apical lobe varies between

three and five (figure 5a,c) and each domain consists of

approximately three to seven cells. The combined in situ
hybridization with tropomyosin as a marker for the musculature

shows that the FLRFamide precursor expression in the mantle

lobe is adjacent to the ventral side of the trunk musculature

(figure 5b). The FLRFamide receptor is expressed in a left and

a right stripe in the trunk musculature (figure 5c,d; electronic

supplementary material, figure S1a) as well as in the muscula-

ture that projects towards and surrounds the chaetae sacs

(figure 5e; electronic supplementary material, figure S1a).

Apart from the expression in the musculature, the receptor is

also expressed in the apical lobe in a broad stripe underneath

the ciliated prototroch (figure 5c,d; electronic supplementary

material, figure S1a).

Since in situ hybridization only reveals where the peptide

precursor is expressed, we used antibody stainings to visual-

ize the nerves that secrete the active peptides. The customized

FLRFamide antibody revealed immunoreactive longitudinal

nerves that project from the apical neuropile (figure 5f,g,h,i)
pairwise along the ventral (figure 5h) and dorsal (figure 5f )

side into the trunk after branching off into the mantle towards

the chaetae sacs at the border of the apical lobe and the

mantle lobe (figure 5f,h,i). The nerves in the trunk are
branching off strongly on the ventral side (figure 5f,g) and

are, at least partially, directly adjacent to the musculature

(figure 5i). The neuropile shows generally strong FLRFamide

immunoreactivity with some nerves projecting towards the

apical ciliary band (figure 5f ) and into the secretory cells that

continue into secretory vesicles outside the apical lobe under-

neath the prototrochal region (figure 5g,i). The secretory cells

and vesicles themselves are prone to antibody trapping so no

statement can be made as to whether they in fact contain

FLRFamide (compare figure 5g without background subtrac-

tion and figure 5f,h,i with background subtraction in

secretory cells and secretory vesicles).
4. Discussion
4.1. FLRFamide triggers two coherent reactions via

an ancient FaRP receptor
The receptor deorphanization and phylogenetic analysis

shows that the Terebratalia FLRFamide receptor belongs to the

ancient FaRP-GPCR group with closely related trochozoan

GPCRs that include the deorphanized P. dumerilii FMRFamide

receptor [49] and related orphan GPCRs in all major bilaterian

groups. The comparable sensitivity to different peptide modi-

fications of the larvae in the behavioural assay and the EC50

http://rsob.royalsocietypublishing.org/
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values of the receptor cell assay suggests that the larval

response is triggered via the FLRFamide receptor. The

expression of the FLRFamide receptor in the longitudinal

trunk musculature and the musculature adjacent to the chaetae

sacs in the mantle supports a direct mode of signalling,

whereby FLRFamide is able to trigger the protrusion of the

chaetae by inducing a muscle contraction. The expression of

the receptor in a broad stripe underneath the ciliary band

and the sinking of early and late larvae, independent of the

presence or the absence of chaetae, also support a direct

effect of FLRFamide on the ciliated cells to induce the sinking

behaviour. While a direct influence of FMRFamide on the cili-

ary movement of trochozoan larvae has already been

suggested before [23,25], the combination of this reaction

with the muscular contraction observed in the T. transversa
larval startle response consists of two different behavioural

actions. In the context of the natural T. transversa defence be-

haviour, the two FLRFamide-like peptides are probably not

the main neurotransmitter of their peptidergic neurons, as

larvae that are desensitized to AFLRFamide/DFLRFamide

are still able to show a defensive stance, although it seems

like the stress level has to be increased. A possible explanation

for the role of FLRFamide might be that it acts as a co-transmit-

ter, to modify or support the signals in the different tissues that

are necessary for this defence behaviour.

4.2. The advantage of coherent sub-reactions during
Terebratalia transversa defence behaviour and their
control by a single peptide

Neuropeptides are considered to be ancient signalling mol-

ecules that are used in complex as well as simple nervous

systems and are even present in Trichoplax which lacks neur-

ons entirely [29,75]. There are a few examples of complex

behaviours that involve coherent sub-reactions like insect

ecdysis or feeding, which are known to deploy single neuro-

peptides to act on several targets as a form of master-

regulator [17–21]. When a single neuropeptide is able to trig-

ger or support the erection of chaetae and sinking, it might be

involved in coordinating the startle reaction independently

from a direct neuronal wiring between these two structures.

While many zoo-planktonic organisms escape potential

predators by a sudden increase in velocity, some species have

been observed to use passive sinking as an efficient escape

strategy instead [3,76]. Passive sinking seems efficient for

slow animals to escape quicker predators such as copepods

that do not detect their prey by vision but by sensing water dis-

turbance [3,11,77]. It has been described that other brachiopod

and annelid larvae seem to have a similar startle behaviour as

T. transversa [12–16]. Direct observations showed that small

fish spit out Sabellaria larvae with their spines erected [15]

and experimental data showed that Sabellaria larvae with

long chaetae have a higher survival rate when exposed to

different predators compared with younger larvae without

chaetae [14]. The combination of a passive sinking behaviour

while actively erecting chaetae might increase the chance to

escape different predators when compared with either behav-

iour alone. The increased water drag due to the erected chaetae

would probably also make an active fleeing inefficient.

Our results demonstrate a case in which a single receptor–

ligand pair can trigger two coherent reactions that integrate
evolutionary novelties such as trochozoan chaetae [57] and

ancient traits such as ciliary-based locomotion [78] into the

T. transversa larval startle behaviour.

4.3. The involvement of a specific neuropeptide in
certain behavioural traits is not necessarily
conserved during evolution

While the FaRP receptor–ligand pair in P. dumerilii and

T. transversa is conserved, the involvement of FaRPs in tro-

chozoan larval behaviour seems to vary. Several studies on

trochozoan larvae have shown that FMRFamide-like immuno-

reactive nerves can be associated with different structures in a

single animal and often include a combination of the apical

organ, ciliary bands and the musculature [38–41,43,79]. In

this context, it is also important to mention that the antibodies

against FMRFamide that are commonly used in morphological

studies can cross-react with other peptides ending in RFamide,

even within the same species [80,81]. Inter-species comparisons

and homologizations of such labelled neurons, especially across

larger evolutionary distances, are therefore problematic. Only a

few experimental studies exist on the effect of FMRFamide on

trochozoan larvae and those focus on the regulation of the

ciliary-based locomotion, which ultimately influences the

vertical swimming direction [22,23,25]. These experiments on

trochozoan larvae showed a taxon-specific up- or downregula-

tion of the ciliary beating or the ciliary arrests. The ciliary

beating alone, however, can be influenced by more than one

peptide in a single species [23], as different neuronal circuits

seem to trigger similar or opposing effects of the same effector

organ and might thereby fine-tune the reaction, based on differ-

ent neuronal inputs. Studies on adult trochozoans show diverse

effects of FMRFamide on various muscles [32–35] and further

taxon-specific functions such as osmoregulation [82], chromato-

phore expansion [83] or suppression of salivary gland activity

[84]. Even experiments on different adult bivalve species

showed species specific up- or downregulation of the heartbeat

by FMRFamide [31]. The seemingly ubiquitous presence

of FaRPs in trochozoan species with various taxon-specific

effects and association with different tissues suggest that the

FMRFamide-like peptides proved to be generally useful as a

regulatory signalling system and were probably redeployed

several times during trochozoan evolution, rather than having

a strictly conserved role that is always associated with similar

behavioural traits. The observation that the presumed ortholo-

gues in the annelid P. dumerilii and the brachiopod N. novocrania
(FMRFamide and YMRFamide, respectively) do not trigger

their respective defence behaviours supports the hypothesis

that the involvement of a specific neuropeptide in similar

behavioural traits is not necessarily conserved.
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18. Kim YJ, Žitňan D, Galizia CG, Cho KH, Adams ME.
2006 A command chemical triggers an innate
behavior by sequential activation of multiple
peptidergic ensembles. Curr. Biol. 16, 1395 – 1407.
(doi:10.1016/j.cub.2006.06.027)

19. Taghert PH, Nitabach MN. 2012 Peptide
neuromodulation in invertebrate model systems.
Neuron 76, 82– 97. (doi:10.1016/j.neuron.2012.08.035)

20. Truman JW. 2005 Hormonal control of insect
ecdysis: endocrine cascades for coordinating
behavior with physiology. Vitam. Horm. 73, 1 – 30.
(doi:10.1016/S0083-6729(05)73001-6)

21. Dailey MJ, Bartness TJ. 2009 Appetitive and
consummatory ingestive behaviors stimulated by
PVH and perifornical area NPY injections.
Am. J. Physiol. Regul. Integr. Comp. Physiol. 296,
R877 – R892. (doi:10.1152/ajpregu.90568.2008)

22. Braubach OR, Dickinson AJG, Evans CCE, Croll RP.
2006 Neural control of the velum in larvae of the
gastropod, Ilyanassa obsoleta. J. Exp. Biol. 209,
4676 – 4689. (doi:10.1242/jeb.02556)

23. Conzelmann M, Offenburger SL, Asadulina A, Keller
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L. In press. A safer, urea-based in situ hybridization
method improves detection of gene expression in
diverse animal species. bioRxiv (doi:10.1101/
133470)

72. Hejnol A. 2008 In situ protocol for embryos and
juveniles of Convolutriloba longifissura. Protoc. Exch.,
201. (doi:10.1038/nprot.2008.201)
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78. Jékely G. 2011 Origin and early evolution of neural
circuits for the control of ciliary locomotion.
Proc. R. Soc. B 278, 914 – 922. (doi:10.1098/rspb.
2010.2027)

79. Nezlin LP. 2010 The golden age of comparative
morphology: laser scanning microscopy and
neurogenesis in trochophore animals. J. Dev. Biol.
41, 381 – 390. (doi:10.1134/S1062360410060056)
80. Vilim FS et al. 2010 Distinct mechanisms produce
functionally complementary actions of
neuropeptides that are structurally related but
derived from different precursors. J. Neurosci. 30,
131 – 147. (doi:10.1523/Jneurosci.3282-09.2010)

81. Peymen K, Watteyne J, Frooninckx L, Schoofs L,
Beets I. 2014 The FMRFamide-like peptide family in
nematodes. Front. Endocrinol. 5, 90. (doi:10.3389/
fendo.2014.00090)

82. Salzet M, Bulet P, Wattez C, Malecha J. 1994
FMRFamide-related peptides in the sex segmental
ganglia of the Pharyngobdellid leech Erpobdella
octoculata: identification and involvement in the
control of hydric balance. Eur. J. Biochem.
221, 269 – 275. (doi:10.1111/j.1432-1033.1994.
tb18738.x)

83. Loi PK, Tublitz N. 1997 Molecular analysis of
FMRFamide- and FMRFamide-related peptides
(FaRPS) in the cuttlefish Sepia officinalis. J. Exp.
Biol. 200, 1483 – 1489.

84. Bulloch AGM, Price DA, Murphy AD, Lee TD,
Bowes HN. 1988 FMRFamide peptides in Helisoma:
identification and physiological actions at a
peripheral synapse. J. Neurosci. 8, 3459 – 3469.
e
n
B
iol.7:170136

http://dx.doi.org/10.1093/plankt/5.5.701
http://dx.doi.org/10.1093/plankt/5.5.701
http://dx.doi.org/10.1098/rspb.2010.2027
http://dx.doi.org/10.1098/rspb.2010.2027
http://dx.doi.org/10.1134/S1062360410060056
http://dx.doi.org/10.1523/Jneurosci.3282-09.2010
http://dx.doi.org/10.3389/fendo.2014.00090
http://dx.doi.org/10.3389/fendo.2014.00090
http://dx.doi.org/10.1111/j.1432-1033.1994.tb18738.x
http://dx.doi.org/10.1111/j.1432-1033.1994.tb18738.x
http://rsob.royalsocietypublishing.org/

	An ancient FMRFamide-related peptide-receptor pair induces defence behaviour in a brachiopod larva
	Background
	Material and methods
	Collection and rearing of Terebratalia transversa larvae
	Bioinformatics
	Behavioural assays
	Receptor deorphanization
	In situ hybridization
	Immunohistochemistry

	Results
	The endogenous neuropeptides DFLRFamide and AFLRFamide trigger the defence behaviour of Terebratalia transversa larvae
	FLRFamide causes sinking of larvae independent from the protrusion of their chaetae
	Modified peptides trigger the defence behaviour at different concentration thresholds
	Identification of the Terebratalia transversa FaRP receptor
	In situ hybridization and immunohistochemistry show localization of peptide receptor in trunk musculature and apical prototroch region

	Discussion
	FLRFamide triggers two coherent reactions via an ancient FaRP receptor
	The advantage of coherent sub-reactions during Terebratalia transversa defence behaviour and their control by a single peptide
	The involvement of a specific neuropeptide in certain behavioural traits is not necessarily conserved during evolution
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding

	Acknowledgements
	References


