161 research outputs found

    Mobocertinib (TAK-788) in EGFR Exon 20 Insertion+ Metastatic NSCLC: Patient-Reported Outcomes from EXCLAIM Extension Cohort.

    Get PDF
    Mobocertinib, an oral, first-in-class epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor selective for EGFR exon 20 insertions (ex20ins), achieved durable responses in adults with previously treated EGFR ex20ins+ metastatic non-small cell lung cancer (mNSCLC) in the EXCLAIM extension cohort of a phase 1/2 study (N = 96; NCT02716116). We assessed patient-reported outcomes (PROs) with mobocertinib 160 mg once daily (28-day cycles) in EXCLAIM (N = 90) with the European Organisation for Research and Treatment of Cancer Core Quality-of-Life Questionnaire (EORTC QLQ-C30) v3.0, lung cancer module (QLQ-LC13), EuroQol-5 Dimensions-5 Levels (EQ-5D-5L) questionnaire, and selected PRO Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) questionnaire. Median treatment duration was 6.8 (range, 0.0-18.8) months (median follow-up: 13.0 [0.7-18.8] months; data cutoff: 1 November 2020). Clinically meaningful improvements in lung cancer symptoms measured by EORTC QLQ-LC13 were observed for dyspnea (54.4% of patients), cough (46.7%), and chest pain (38.9%), evident at cycle 2 and throughout treatment (least-squares mean [LSM] changes from baseline: dyspnea, -3.2 [p = 0.019]; cough, -9.3 [p < 0.001]; chest pain, -8.2 [p < 0.001]). EORTC QLQ-C30 results indicated no statistically significant changes in global health status/quality of life (LSM change from baseline: -1.8 [p = 0.235]). On symptom scores, significant worsening from baseline was observed for diarrhea (LSM change from baseline: +34.1; p < 0.001) and appetite loss (+6.6; p = 0.004), while improvements were observed for dyspnea (LSM change from baseline: -5.1 [p = 0.002]), insomnia (-6.5 [p = 0.001]), and constipation (-5.7 [p < 0.001]). EQ-5D-5L health status was maintained. Common PRO-CTCAE symptoms were diarrhea, dry skin, rash, and decreased appetite (mostly low grade); in the first 24 weeks of treatment, 64.4% of patients had worsening diarrhea frequency and 67.8% had worsening dry skin severity. Overall, PROs with mobocertinib showed clinically meaningful improvement in lung cancer-related symptoms, with health-related quality of life maintained despite changes in some adverse event symptom scales

    Randomized phase II study of erlotinib in combination with placebo or R1507, a monoclonal antibody to insulin-like growth factor-1 receptor, for advanced-stage non-small-cell lung cancer.

    Get PDF
    PURPOSE: R1507 is a selective, fully human, recombinant monoclonal antibody (immunoglobulin G1 subclass) against insulin-like growth factor-1 receptor (IGF-1R). The strong preclinical evidence supporting coinhibition of IGF-1R and epidermal growth factor receptor (EGFR) as anticancer therapy prompted this study. PATIENTS AND METHODS: Patients with advanced-stage non–small-cell lung cancer (NSCLC) with progression following one or two prior regimens, Eastern Cooperative Oncology Group (ECOG) performance status 0 to 2, and measurable disease were eligible. Patients were randomly assigned to receive erlotinib (150 mg orally once a day) in combination with either placebo, R1507 9 mg/kg weekly, or R1507 16 mg/kg intravenously once every 3 weeks. Treatment cycles were repeated every 3 weeks. The primary end point was comparison of the 12-week progression-free survival (PFS) rate. RESULTS: In all, 172 patients were enrolled: median age, 61 years; female, 33%; never-smokers, 12%; and performance status 0 or 1, 88%. The median number of R1507 doses was six for the weekly arm and 3.5 for the every-3-weeks arm. Grades 3 to 4 adverse events occurred in 37%, 44%, and 48% of patients with placebo, R1507 weekly, and R1507 every 3 weeks, respectively. The 12-week PFS rates were 39%, 37%, and 44%, and the median overall survival was 8.1, 8.1, and 12.1 months for the three groups, respectively, with statistically nonsignificant hazard ratios. The 12-week PFS rate in patients with KRAS mutation was 36% with R1507 compared with 0% with placebo. CONCLUSION: The combination of R1507 with erlotinib did not provide PFS or survival advantage over erlotinib alone in an unselected group of patients with advanced NSCLC. Predictive biomarkers are essential for further development of combined inhibition of IGF-1R and EGFR

    An unbiased in vitro screen for activating epidermal growth factor receptor mutations

    Get PDF
    Cancer tissues harbor thousands of mutations, and a given oncogene may be mutated at hundreds of sites. Yet, only a few of these mutations have been functionally tested. Here, we describe an unbiased platform for the functional characterization of thousands of variants of a single receptor tyrosine kinase (RTK) gene in a single assay. Our in vitro screen for activating mutations (iSCREAM) platform enabled rapid analysis of mutations conferring gain-of-function RTK activity promoting clonal growth. The screening strategy included a somatic model of cancer evolution and utilized a library of 7,216 randomly mutated epidermal growth factor receptor (EGFR) single-nucleotide variants, that were tested in murine lymphoid Ba/F3 cells. These cells depend on exogenous interleukin-3 (IL-3) for growth, but this dependency can be compensated by ectopic EGFR overexpression, enabling selection for gain-of-function EGFR mutants. Analysis of the enriched mutants revealed EGFR A702V, a novel activating variant that structurally stabilized the EGFR kinase dimer interface and conferred sensitivity to kinase inhibition by afatinib. As proof of concept for our approach, we recapitulated clinical observations and identified the EGFR L858R as the major enriched EGFR variant. Altogether iSCREAM enabled robust enrichment of 21 variants from a total of 7,216 EGFR mutations. These findings indicate the power of this screening platform for unbiased identification of activating RTK variants that are enriched under selection pressure in a model of cancer heterogeneity and evolution

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.

    Get PDF
    Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance

    Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients

    Get PDF
    The impact of KRAS mutations on cetuximab sensitivity in epidermal growth factor receptor fluorescence in situ hybridisation-positive (EGFR FISH+) metastatic colorectal cancer patients (mCRC) has not been previously investigated. In the present study, we analysed KRAS, BRAF, PI3KCA, MET, and IGF1R in 85 mCRC treated with cetuximab-based therapy in whom EGFR status was known. KRAS mutations (52.5%) negatively affected response only in EGFR FISH+ patients. EGFR FISH+/KRAS mutated had a significantly lower response rate (P=0.04) than EGFR FISH+/KRAS wild type patients. Four EGFR FISH+ patients with KRAS mutations responded to cetuximab therapy. BRAF was mutated in 5.0% of patients and none responded to the therapy. PI3KCA mutations (17.7%) were not associated to cetuximab sensitivity. Patients overexpressing IGF1R (74.3%) had significantly longer survival than patients with low IGF1R expression (P=0.006), with no difference in response rate. IGF1R gene amplification was not detected, and only two (2.6%) patients, both responders, had MET gene amplification. In conclusion, KRAS mutations are associated with cetuximab failure in EGFR FISH+ mCRC, even if it does not preclude response. The rarity of MET and IGF1R gene amplification suggests a marginal role in primary resistance. The potential prognostic implication of IGF1R expression merits further evaluation

    Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients

    Get PDF
    Somatic mutations of LKB1 tumour suppressor gene have been detected in human cancers including non-small cell lung cancer (NSCLC). The relationship between LKB1 mutations and clinicopathological characteristics and other common oncogene mutations in NSCLC is inadequately described. In this study we evaluated tumour specimens from 310 patients with NSCLC including those with adenocarcinoma, adenosquamous carcinoma, and squamous cell carcinoma histologies. Tumours were obtained from patients of US (n=143) and Korean (n=167) origin and screened for LKB1, KRAS, BRAF, and EGFR mutations using RT—PCR-based SURVEYOR-WAVE method followed by Sanger sequencing. We detected mutations in the LKB1 gene in 34 tumours (11%). LKB1 mutation frequency was higher in NSCLC tumours of US origin (17%) compared with 5% in NSCLCs of Korean origin (P=0.001). They tended to occur more commonly in adenocarcinomas (13%) than in squamous cell carcinomas (5%) (P=0.066). LKB1 mutations associated with smoking history (P=0.007) and KRAS mutations (P=0.042) were almost mutually exclusive with EGFR mutations (P=0.002). The outcome of stages I and II NSCLC patients treated with surgery alone did not significantly differ based on LKB1 mutation status. Our study provides clinical and molecular characteristics of NSCLC, which harbour LKB1 mutations

    Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles

    Get PDF
    INTRODUCTION: Triple-negative breast cancers (TNBCs) are characterised by lack of expression of hormone receptors and epidermal growth factor receptor 2 (HER-2). As they frequently express epidermal growth factor receptors (EGFRs), anti-EGFR therapies are currently assessed for this breast cancer subtype as an alternative to treatments that target HER-2 or hormone receptors. Recently, EGFR-activating mutations have been reported in TNBC specimens in an East Asian population. Because variations in the frequency of EGFR-activating mutations in East Asians and other patients with lung cancer have been described, we evaluated the EGFR mutational profile in tumour samples from European patients with TNBC. METHODS: We selected from a DNA tumour bank 229 DNA samples isolated from frozen, histologically proven and macrodissected invasive TNBC specimens from European patients. PCR and high-resolution melting (HRM) analyses were used to detect mutations in exons 19 and 21 of EGFR. The results were then confirmed by bidirectional sequencing of all samples. RESULTS: HRM analysis allowed the detection of three EGFR exon 21 mutations, but no exon 19 mutations. There was 100% concordance between the HRM and sequencing results. The three patients with EGFR exon 21 abnormal HRM profiles harboured the rare R836R SNP, but no EGFR-activating mutation was identified. CONCLUSIONS: This study highlights variations in the prevalence of EGFR mutations in TNBC. These variations have crucial implications for the design of clinical trials involving anti-EGFR treatments in TNBC and for identifying the potential target population

    Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When combined with adequate tumoricidal doses, accurate target volume delineation remains to be the one of the most important predictive factors for radiotherapy (RT) success in locally advanced or medically inoperable malignant pleural mesothelioma (MPM) patients. Recently, 18-fluorodeoxyglucose positron emission tomography (PET) has demonstrated significant improvements in diagnosis and accurate staging of MPM. However, role of additional PET data has not been studied in RT planning (RTP) of patients with inoperable MPM or in those who refuse surgery. Therefore, we planned to compare CT with co-registered PET-CT as the basis for delineating target volumes in these patients group.</p> <p>Methods</p> <p>Retrospectively, the CT and co-registered PET-CT data of 13 patients with histologically proven MPM were utilized to delineate target volumes separately. For each patient, target volumes (gross tumor volume [GTV], clinical target volume [CTV], and planning target volume [PTV]) were defined using the CT and PET-CT fusion data sets. The PTV was measured in two ways: PTV1 was CTV plus a 1-cm margin, and PTV2 was GTV plus a 1-cm margin. We analyzed differences in target volumes.</p> <p>Results</p> <p>In 12 of 13 patients, compared to CT-based delineation, PET-CT-based delineation resulted in a statistically significant decrease in the mean GTV, CTV, PTV1, and PTV2. In these 12 patients, mean GTV decreased by 47.1% ± 28.4%, mean CTV decreased by 38.7% ± 24.7%, mean PTV1 decreased by 31.1% ± 23.1%, and mean PTV2 decreased by 40.0% ± 24.0%. In 4 of 13 patients, hilar lymph nodes were identified by PET-CT that was not identified by CT alone, changing the nodal status of tumor staging in those patients.</p> <p>Conclusion</p> <p>This study demonstrated the usefulness of PET-CT-based target volume delineation in patients with MPM. Co-registration of PET and CT information reduces the likelihood of geographic misses, and additionally, significant reductions observed in target volumes may potentially allow escalation of RT dose beyond conventional limits potential clinical benefits in tumor control rates, which needs to be tested in future studies.</p

    Assessing the clinical utility of cancer genomic and proteomic data across tumor types

    Get PDF
    Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, miRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We found that incorporating molecular data with clinical variables yielded statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data
    corecore