64 research outputs found

    Reduction of Campylobacter jejuni in Broiler Chicken by Successive Application of Group II and Group III Phages

    Get PDF
    Background Bacteriophage treatment is a promising tool to reduce Campylobacter in chickens. Several studies have been published where group II or group III phages were successfully applied. However, these two groups of phages are different regarding their host ranges and host cell receptors. Therefore, a concerted activity of group II and group III phages might enhance the efficacy of a treatment and decrease the number of resistant bacteria. Results In this study we have compared the lytic properties of some group II and group III phages and analysed the suitability of various phages for a reduction of C. jejuni in broiler chickens. We show that group II and group III phages exhibit different kinetics of infection. Two group III and one group II phage were selected for animal experiments and administered in different combinations to three groups of chickens, each containing ten birds. While group III phage CP14 alone reduced Campylobacter counts by more than 1 log10 unit, the concomitant administration of a second group III phage (CP81) did not yield any reduction, probably due to the development of resistance induced by this phage. One group of chickens received phage CP14 and, 24 hours later, group II phage CP68. In this group of animals, Campylobacter counts were reduced by more than 3 log10 units. Conclusion The experiments illustrated that Campylobacter phage cocktails have to be carefully composed to achieve the best results

    Phenotypic and Genotypic Characterization of Veterinary Vibrio cincinnatiensis Isolates

    No full text
    Vibrio cincinnatiensis is a halophilic species which has been found in marine and estuarine environments worldwide. The species is considered a rare pathogen for which the significance for humans is unclear. In this study, nine veterinary isolates were investigated that were obtained from domestic animals in Germany. The isolates were mostly recovered from abortion material of pigs, cattle, and horse (amnion or fetuses). One isolate was from a goose. A human clinical strain from a case of enteritis in Germany described in the literature was also included in the study. Whole-genome sequencing (WGS) of all isolates and MALDI-TOF MS (matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry) were performed to verify the species assignment. All strains were investigated for phenotypic traits including antimicrobial resistance (AMR), biochemical properties, and two virulence-associated phenotypes (hemolytic activity and resistance to human serum). WGS data and MS spectra confirmed that all veterinary isolates are closely related to the type strain V. cincinnatiensis NCTC12012. An exception was the human isolate from Germany which is related to the other isolates but could belong to another species. The isolates were similar in most biochemical phenotypes. Only one strain showed a very weak hemolytic activity against sheep erythrocytes, and serum resistance was intermediate in two strains. AMR phenotypes were more variable between the isolates. Resistances were observed against ß-lactams ampicillin and cefoxitin and against tetracycline and the sulfonamide antibiotics trimethoprim and sulfamethoxazole. Some acquired AMR genes were identified by bioinformatics analyses. WGS and MALDI-TOF MS data reveal a close relationship of the veterinary isolates and the type strain V. cincinnatiensis NCTC12012, which is a clinical human isolate. As the veterinary isolates of this study were mostly recovered from abortion material (amnions and fetuses), a zoonotic potential of the veterinary isolates seems possible

    <i>Campylobacter</i> Phage Isolation and Characterization: What We Have Learned So Far

    No full text
    Lytic Campylobacter phages, which can be used to combat this pathogen in animals and on food products, have been studied for more than 30 years. Though, due to some peculiarities of the phages, which hampered their isolation and particularly their molecular analysis for a long time, progress in this research field was rather slow. Meanwhile, the situation has changed and much more is known about the biology and genetics of those phages. In this article, we address specific issues that should be considered when Campylobacter phages are studied, starting with the isolation and propagation of the phages and ending with a thorough characterization including whole-genome sequencing. The basis for advice and recommendations given here is a careful review of the scientific literature and experiences that we have had ourselves with Campylobacter phages

    Phage vB_YenS_P400, a Novel Virulent Siphovirus of Yersinia enterocolitica Isolated from Deer

    No full text
    Phage vB_YenS_P400 isolated from deer, is a virulent siphovirus of Y. enterocolitica, whose circularly permutated genome (46,585 bp) is not substantially related to any other phage deposited in public nucleotide databases. vB_YenS_P400 showed a very narrow host range and exclusively lysed two Y. enterocolitica B4/O:3 strains. Moreover, lytic activity by this phage was only discernible at room temperature. Together with the finding that vB_YenS_P400 revealed a long latent period (90 to 100 min) and low burst size (five to ten), it is not suitable for applications but provides insight into the diversity of Yersinia phages

    Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates

    No full text
    Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains

    Prevalence, Host Range, and Comparative Genomic Analysis of Temperate Ochrobactrum Phages

    No full text
    Ochrobactrum and Brucella are closely related bacteria that populate different habitats and differ in their pathogenic properties. Only little is known about mobile genetic elements in these genera which might be important for survival and virulence. Previous studies on Brucella lysogeny indicated that active phages are rare in this genus. To gain insight into the presence and nature of prophages in Ochrobactrum, temperate phages were isolated from various species and characterized in detail. In silico analyses disclosed numerous prophages in published Ochrobactrum genomes. Induction experiments showed that Ochrobactrum prophages can be induced by various stress factors and that some strains released phage particles even under non-induced conditions. Sixty percent of lysates prepared from 125 strains revealed lytic activity. The host range and DNA similarities of 19 phages belonging to the families Myoviridae, Siphoviridae, or Podoviridae were determined suggesting that they are highly diverse. Some phages showed relationship to the temperate Brucella inopinata phage BiPB01. The genomic sequences of the myovirus POA1180 (41,655 bp) and podovirus POI1126 (60,065 bp) were analyzed. Phage POA1180 is very similar to a prophage recently identified in a Brucella strain isolated from an exotic frog. The POA1180 genome contains genes which may confer resistance to chromate and the ability to take up sulfate. Phage POI1126 is related to podoviruses of Sinorhizobium meliloti (PCB5), Erwinia pyrifoliae (Pep14), and Burkholderia cenocepacia (BcepIL02) and almost identical to an unnamed plasmid of the Ochrobactrum intermedium strain LMG 3301. Further experiments revealed that the POI1126 prophage indeed replicates as an extrachromosomal element. The data demonstrate for the first time that active prophages are common in Ochrobactrum and suggest that atypical brucellae also may be a reservoir for temperate phages

    Detection of <i>Campylobacter</i> phages in environmental and food samples by qPCR.

    No full text
    <p>Detection of <i>Campylobacter</i> phages in environmental and food samples by qPCR.</p

    Characterization of trh2 harbouring Vibrio parahaemolyticus strains isolated in Germany.

    No full text
    Vibrio parahaemolyticus is a recognized human enteropathogen. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) as well as the type III secretion system 2 (T3SS2) are considered as major virulence factors. As tdh positive strains are not detected in coastal waters of Germany, we focused on the characterization of trh positive strains, which were isolated from mussels, seawater and patients in Germany.Ten trh harbouring V. parahaemolyticus strains from Germany were compared to twenty-one trh positive strains from other countries. The complete trh sequences revealed clustering into three different types: trh1 and trh2 genes and a pseudogene Ψtrh. All German isolates possessed alleles of the trh2 gene. MLST analysis indicated a close relationship to Norwegian isolates suggesting that these strains belong to the autochthonous microflora of Northern Europe seawaters. Strains carrying the pseudogene Ψtrh were negative for T3SS2β effector vopC. Transcription of trh and vopC genes was analyzed under different growth conditions. Trh2 gene expression was not altered by bile while trh1 genes were inducible. VopC could be induced by urea in trh2 bearing strains. Most trh1 carrying strains were hemolytic against sheep erythrocytes while all trh2 positive strains did not show any hemolytic activity. TRH variants were synthesized in a prokaryotic cell-free system and their hemolytic activity was analyzed. TRH1 was active against sheep erythrocytes while TRH2 variants were not active at all.Our study reveals a high diversity among trh positive V. parahaemolyticus strains. The function of TRH2 hemolysins and the role of the pseudogene Ψtrh as pathogenicity factors are questionable. To assess the pathogenic potential of V. parahaemolyticus strains a differentiation of trh variants and the detection of T3SS2β components like vopC would improve the V. parahaemolyticus diagnostics and could lead to a refinement of the risk assessment in food analyses and clinical diagnostics

    Primers and probes for the qPCR detection <i>of Campylobacter</i> phages.

    No full text
    <p>Primers and probes for the qPCR detection <i>of Campylobacter</i> phages.</p
    corecore