19 research outputs found

    Winning strategies in congested traffic

    Full text link
    One-directional traffic on two-lanes is modeled in the framework of a spring-block type model. A fraction qq of the cars are allowed to change lanes, following simple dynamical rules, while the other cars keep their initial lane. The advance of cars, starting from equivalent positions and following the two driving strategies is studied and compared. As a function of the parameter qq the winning probability and the average gain in the advancement for the lane-changing strategy is computed. An interesting phase-transition like behavior is revealed and conclusions are drawn regarding the conditions when the lane changing strategy is the better option for the drivers.Comment: 5 pages, 5 figure

    Spring-block model for a single-lane highway traffic

    Full text link
    A simple one-dimensional spring-block chain with asymmetric interactions is considered to model an idealized single-lane highway traffic. The main elements of the system are blocks (modeling cars), springs with unidirectional interactions (modeling distance keeping interactions between neighbors), static and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal disorder in the values of these friction forces (modeling differences in the driving attitudes). The traveling chain of cars correspond to the dragged spring-block system. Our statistical analysis for the spring-block chain predicts a non-trivial and rich complex behavior. As a function of the disorder level in the system a dynamic phase-transition is observed. For low disorder levels uncorrelated slidings of blocks are revealed while for high disorder levels correlated avalanches dominates.Comment: 6 pages, 7 figure

    Impact parameter method calculations for fully differential ionization cross sections

    Full text link
    In this work our previous fully differential ionization cross section calculations using the semiclassical, impact parameter method are improved by a new method suitable to calculate impact parameter values corresponding to different momentum transfers. This goal is achieved by two successive steps. First, using the transverse momentum balance different projectile scattering angles are calculated for the binary and recoil peak regions as a function of the transferred momentum. Then, by treating the projectile scattering as a classical potential scattering problem, impact parameters are assigned to these scattering angles. The new method, which no longer contains empirical considerations, is tested calculating by fully differential ionization cross sections for single ionization of helium produced by fast C6+^{6+} ions.Comment: 4 pages, 3 figure

    Semiclassical model for calculating fully differential ionization cross sections of the H2_2 molecule

    Full text link
    Fully differential cross sections are calculated for the ionization of H2_2 by fast charged projectiles using a semiclassical model developed previously for the ionization of atoms. The method is tested in case of 4 keV electron and 6 MeV proton projectiles. The obtained results show good agreement with the available experimental data. Interference effects due to the two-center character of the target are also observed and analyzed.Comment: 11 pages, 4 figure

    Shake-induced order in nanosphere systems

    Full text link
    Self-assembled patterns obtained from a drying nanosphere suspension are investigated by computer simulations and simple experiments. Motivated by the earlier experimental results of Sasaki and Hane and Schope, we confirm that more ordered triangular lattice structures can be obtained whenever a moderate intensity random shaking is applied on the drying system. Computer simulations are realized on an improved version of a recently elaborated Burridge-Knopoff-type model. Experiments are made following the setup of Sasaki and Hane, using ultrasonic radiation as source for controlled shaking.Comment: 7 pages, 10 figure

    Ionization-excitation of lithium by fast charged projectiles

    Get PDF
    Abstract Cross sections for the double K-shell vacancy production of lithium atoms in collision with fast charged projectiles are calculated. For these ionizationexcitation processes, the relative importance of the different first-and secondorder mechanisms and the dependence of the cross sections on the sign of projectile charge are investigated. Our studies confirm the strong influence of electron-electron correlations on the behaviour of the cross sections. The obtained results are in reasonable agreement with the data as observed in recent experiments

    Semiclassical description of the kinematically complete experiments

    Full text link
    Based on the semiclassical, impact parameter method a theoretical model is constructed to calculate totally differential cross sections for single ionization of helium by impact with fast C6+^{6+} ions. Good agreement with the experiment is achieved in the scattering plane, while in the perpendicular plane a similar structure to that observed experimentally is obtained. The contribution of different partial waves to the cross section is also investigated.Comment: 9 pages, 6 figure

    Spring-Block Model Reveals Region-Like Structures

    Get PDF
    A mechanical spring-block model is used for realizing an objective space partition of settlements from a geographic territory in region-like structures. The method is based on the relaxation-dynamics of the spring-block system and reveals in a hierarchical manner region-like entities at different spatial scales. It takes into account in an elegant manner both the spatiality of the elements and the connectivity relations among them. Spatiality is taken into account by using the geographic coordinates of the settlements, and by detecting the neighbors with the help of a Delaunay triangulation. Connectivity between neighboring settlements are quantified using a Pearson-like correlation for the relative variation of a relevant socio-economic parameter (population size, GDP, tax payed per inhabitant, etc.). The method is implemented in an interactive JAVA application and it is applied with success for an artificially generated society and for the case of USA, Hungary and Transylvania

    Remarks on the Cauchy functional equation and variations of it

    Full text link
    This paper examines various aspects related to the Cauchy functional equation f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y), a fundamental equation in the theory of functional equations. In particular, it considers its solvability and its stability relative to subsets of multi-dimensional Euclidean spaces and tori. Several new types of regularity conditions are introduced, such as a one in which a complex exponent of the unknown function is locally measurable. An initial value approach to analyzing this equation is considered too and it yields a few by-products, such as the existence of a non-constant real function having an uncountable set of periods which are linearly independent over the rationals. The analysis is extended to related equations such as the Jensen equation, the multiplicative Cauchy equation, and the Pexider equation. The paper also includes a rather comprehensive survey of the history of the Cauchy equation.Comment: To appear in Aequationes Mathematicae (important remark: the acknowledgments section in the official paper exists, but it appears before the appendix and not before the references as in the arXiv version); correction of a minor inaccuracy in Lemma 3.2 and the initial value proof of Theorem 2.1; a few small improvements in various sections; added thank
    corecore