93 research outputs found

    A fibre forming smectic twist-bent liquid crystalline phase

    Get PDF
    We demonstrate the nanostructure and filament formation of a novel liquid crystal phase of a dimeric mesogen below the twist–bend nematic phase. The new fibre-forming phase is distinguished by a short-correlated smectic order combined with an additional nanoscale periodicity that is not associated with density modulation

    Anomalous increase in nematic-isotropic transition temperature in dimer molecules induced by magnetic field

    Get PDF
    We have determined the nematic-isotropic transition temperature as a function of applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15K when subjected to 22T magnetic field. The increase is conjectured to be caused by a magnetic field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers

    Spherical-cap droplets of a photo-responsive bent liquid crystal dimer

    Get PDF
    The stays and research activities of J. Y. and F. A. in Hungary, and P. S. and A. B. in Japan are supported by the JSPS-HAS bilateral program. J. Y. was partially supported by JSPS KAKENHI Grant Number 15K17739. A. J. acknowledges financial support by NSF DMR: 1307674. Financial support from the grants NKFIH PD 121019 and FK 125134 are acknowledged.Peer reviewedPostprin

    Nematic twist-bend phase with nanoscale modulation of molecular orientation

    Get PDF
    A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt)

    Magnetically tunable selective reflection of light by heliconical cholesterics

    Get PDF
    This work was financially supported by NSF DMR-1307674, NSF Grant No. DMR-1410378, and AFOSR (Grant No. FA9550-12-1-0037). The work utilized the facilities of the NHMFL, which is supported by NSF DMR-0084173, the State of Florida, and the U.S. Department of Energy.Peer reviewedPublisher PD

    Theory of Banana Liquid Crystal Phases and Phase Transitions

    Full text link
    We study phases and phase transitions that can take place in the newly discovered banana (bow-shaped or bent-core) liquid crystal molecules. We show that to completely characterize phases exhibited by such bent-core molecules a third-rank tensor TijkT^{ijk} order parameter is necessary in addition to the vector and the nematic (second-rank) tensor order parameters. We present an exhaustive list of possible liquid phases, characterizing them by their space-symmetry group and order parameters, and catalog the universality classes of the corresponding phase transitions that we expect to take place in such bent-core molecular liquid crystals. In addition to the conventional liquid-crystal phases such as the nematic phase, we predict the existence of novel liquid phases, including the spontaneously chiral nematic (NT+2)(N_T + 2)^* and chiral polar (VT+2)(V_T + 2)^* phases, the orientationally-ordered but optically isotropic tetrahedratic TT phase, and a novel nematic NTN_T phase with D2dD_{2d} symmetry that is neither uniaxial nor biaxial. Interestingly, the Isotropic-Tetrahedratic transition is {\em continuous} in mean-field theory, but is likely driven first-order by thermal fluctuations. We conclude with a discussion of smectic analogs of these phases and their experimental signatures.Comment: 28 pgs. RevTex, 32 eps figures, submitted to Phys. Rev.

    Mesophase structure and behaviour in bulk and restricted geometry of a dimeric compound exhibiting a nematic-nematic transition

    Get PDF
    We present structural studies of a dimeric compound composed of a central heptyl spacer linking two mesogens consisiting of terphenyl units at which two adjacent fluoro groups are attached to each central ring. The terminal rings are linked to pentyl chains as terminal groups. The material exhibits a nematic-nematic transition and a low temperature modulated phase. The higher temperature nematic phase was found to exhibit an anomaly of the bend elastic constant similar to that of the dimers with N-Ntb phase sequence, and the physical properties of the low-temperature nematic phase are similar to those of the known Ntb materials. The structure of the low-temperature modulated smectic/columnar phase is described together with its ability to form freely suspended films and fibres. The relation of the modulated structure to the fibre formation and to the appearance of the labyrinthine instability in freely-suspended films is discussed

    Peptide Models - XXIV: An ab Initio Study on N-formyl-l-prolinamide With Trans Peptide Bond. The Existence or Non-existence of Alpha(l) And Epsilon(l) Conformations

    Get PDF
    N-formyl-L-prolinamide was subjected to geometry optimization at three levels of theory: HF/3-21G, HF/6-31G (d) and B3LYP/6-31G (d). At all three levels of computation the global minimum was gamma(L) (inverse gamma-Turn) backbone conformation with two ring-puckered forms "UP" and "DOWN". At HF/3-21G level of theory three backbone conformations were found gamma(L), epsilon(L), and alpha(L). At higher levels of theory the epsilon(L), and alpha(L) conformations disappeared. The ''UP'' and ''DOWN'' ring-puckered forms, in the gamma(L) backbone conformation, led to practically identical vibrational spectra at the B3LYP/6-31G (d) level of theory
    corecore