301 research outputs found

    An analysis of cosmological perturbations in hydrodynamical and field representations

    Get PDF
    Density fluctuations of fluids with negative pressure exhibit decreasing time behaviour in the long wavelength limit, but are strongly unstable in the small wavelength limit when a hydrodynamical approach is used. On the other hand, the corresponding gravitational waves are well behaved. We verify that the instabilities present in density fluctuations are due essentially to the hydrodynamical representation; if we turn to a field representation that lead to the same background behaviour, the instabilities are no more present. In the long wavelength limit, both approachs give the same results. We show also that this inequivalence between background and perturbative level is a feature of negative pressure fluid. When the fluid has positive pressure, the hydrodynamical representation leads to the same behaviour as the field representation both at the background and perturbative levels.Comment: Latex file, 18 page

    Facet-dependent photocatalytic and antibacterial properties of a-Ag2WO4 crystals: combining experimental data and theoretical insights

    Get PDF
    In this paper, we have combined the various experimental results and first-principles calculations with a new and interesting discussion to explain the photocatalytic and antibacterial activities of α-Ag2WO4 crystals, which were obtained using the microwave-hydrothermal (MH) method with anionic surfactants. The advantages of the insights gained through the present work are two-fold. First, the mechanism and origin of the photocatalytic and antibacterial activities can be rationalized. Second, this facile and controllable synthetic method is expected to encourage the synthesis of complex metal oxides with specific active facets, and these insights can contribute to the rational design of new materials for multifunctional applications. X-ray diffraction and Rietveld refinement analysis confirmed that all the crystals have an orthorhombic structure without deleterious phases. Ultraviolet–visible diffuse reflectance spectroscopy indicated the presence of intermediary energy levels and a variation in the optical band gap values (3.09–3.14 eV) with the crystal growth process. The geometry, electronic properties of the bulk, and surface energies of these crystals were evaluated using first-principles quantum mechanical calculations based on the density functional theory. The crystal shapes was experimentally and theoretically modeled based on Rietveld refinement data, emission scanning electron microscopy images, and Wulff construction. To obtain a wide variety of crystal shapes, the morphologies were gradually varied by tuning the surface chemistry, i.e., the relative stability of the faceted crystals. The growth mechanisms of different α-Ag2WO4 crystals and their facet-dependent photocatalytic and antibacterial performances were explored in details. The combination of experimental and theoretical data revealed the presence of (110) and (011) planes with high surface energies together with the disappearance of faces related to the (010)/(0[1 with combining macron]0) planes in α-Ag2WO4 crystals are key factors that can rationalize both the photocatalytic and antibacterial activities. The different activities may be attributed to the different number of unsaturated superficial Ag and W atoms capable of forming the main active adsorption sites. Finally, we discuss how knowledge of surface-specific properties can be utilized to design a number of crystal morphologies that may offer improved performance in various applications.The authors acknowledge the financial support of the following Brazilian research funding institutions: the Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP; 2012/14004-5 and 2013/07296-2), Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq; 479644/2012-8 and 304531/2013-8) and Coordenação de Aperfeiçoamento de Pessoal de NĂ­vel Superior (CAPES). J.A. and L.G. are grateful to Prometeo/2009/053 (GeneralitatValenciana), Ministerio de Economia y Competitividad (Spain; CTQ2012-36253-C03-02), and the Spanish Brazilian program (PHB2009-0065-PC). We also acknowledge the Servei InformĂĄtica, Universitat Jaume I for the generous allotment of computer time

    Quantum Cosmology in Scalar-Tensor Theories With Non Minimal Coupling

    Get PDF
    Quantization in the minisuperspace of non minimal scalar-tensor theories leads to a partial differential equation which is non separable. Through a conformal transformation we can recast the Wheeler-DeWitt equation in an integrable form, which corresponds to the minimal coupling case, whose general solution is known. Performing the inverse conformal transformation in the solution so found, we can construct the corresponding one in the original frame. This procedure can also be employed with the bohmian trajectories. In this way, we can study the classical limit of some solutions of this quantum model. While the classical limit of these solutions occurs for small scale factors in the Einstein's frame, it happens for small values of the scalar field non minimally coupled to gravity in the Jordan's frame, which includes large scale factors.Comment: latex, 18 page

    Are there differences in auscultatory pulse in total blood flow restriction between positions, limbs and body segments?

    Get PDF
    Verification of the auscultatory pulse in total blood flow restriction (BFR) has been a limiting factor in studies due to the way in which it is evaluated and prescribed, as hemodynamic measurements can be directly affected by gravity. The aim of the present study was to compare the auscultatory pulse in BFR between positions, genders, limbs and body segments in healthy young individuals. A total of 156 subjects participated in the study, 76 of whom were male and 80 of whom were female (23.9±3.7 years, 66.5±11.5 kg, 1.67±0.07 m). After filling in registration data, anthropometry was evaluated, and BFR pressure was determined. BFR was evaluated in a randomized manner in both limbs (upper and lower) and in both segments (right and left) in the following positions: a) lying in the supine position; B) sitting with knees and trunk at 90°; and c) standing in the anatomical position. Significant differences were observed between the lying, sitting and standing positions (p0.05). The BFR point appears to differ between positions, genders, lower limbs and segments. Therefore, it is recommended that health professionals should check the BFR point in the position relating to the exercise that will be performed, taking into account gender, lower limbs and body segments

    Roles of non-coding RNA in sugarcane-microbe interaction

    Get PDF
    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a coppertransporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper- microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 50RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly

    Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams

    Get PDF
    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national - NLP and regional-level - RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives

    XRCC1 gene polymorphisms in a population sample and in women with a family history of breast cancer from Rio de Janeiro (Brazil)

    Get PDF
    The X-ray repair cross-complementing Group1 (XRCC1) gene has been defined as essential in the base excision repair (BER) and single-strand break repair processes. This gene is highly polymorphic, and the most extensively studied genetic changes are in exon 6 (Arg194Trp) and in exon 10 (Arg399Gln). These changes, in conserved protein sites, may alter the base excision repair capacity, increasing the susceptibility to adverse health conditions, including cancer. In the present study, we estimated the frequencies of the XRCC1 gene polymorphisms Arg194Trp and Arg399Gln in healthy individuals and also in women at risk of breast cancer due to family history from Rio de Janeiro. The common genotypes in both positions (194 and 399) were the most frequent in this Brazilian sample. Although the 194Trp variant was overrepresented in women reporting familial cases of breast cancer, no statistically significant differences concerning genotype distribution or intragenic interactions were found between this group and the controls. Thus, in the population analyzed by us, variants Arg194Trp and Arg399Gln did not appear to have any impact on breast cancer susceptibility
    • 

    corecore