172 research outputs found

    Aids: déjà vu in ancient Egypt?

    Get PDF

    An updated overview of the neurophysiological and psychosocial dimensions of fibromyalgia: A call for an integrative model

    Get PDF
    Research into the neurobiological and psychosocial mechanisms involved in fibromyalgia (FM) has progressed remarkably in recent years. Despite this, currents accounts of FM fail to capture the complex, dynamic and mutual crosstalk between neurophysiological and psychosocial domains. We conducted a comprehensive review of the existing literature in order to synthesise current knowledge on FM, explore and highlight multi-level links and pathways among different systems and build bridges between existing approaches. An extensive panel of international experts in neurophysiology and psychosocial aspects of FM discussed the collected evidence and progressively refined and conceptualized its interpretation. Fibromyalgia is a complex condition resulting from the dynamic interplay between multiple systems and processes. We provided an updated overview of the most relevant observations in FM to date as well as the potential pathways by which they exert they are related and exert their mutual influence, to produce the manifestations commonly associated with FM. This review constituted the first step towards and supported the development of a much needed model capable of integrating the main factors implicated in FM into a single, unified model that may prove valuable in understanding and managing FM

    EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) comprises a group of inherited disorders characterized by bone fragility and increased susceptibility to fractures. Historically, the laboratory confirmation of the diagnosis OI rested on cultured dermal fibroblasts to identify decreased or abnormal production of abnormal type I (pro)collagen molecules, measured by gel electrophoresis. With the discovery of COL1A1 and COL1A2 gene variants as a cause of OI, sequence analysis of these genes was added to the diagnostic process. Nowadays, OI is known to be genetically heterogeneous. About 90% of individuals with OI are heterozygous for causative variants in the COL1A1 and COL1A2 genes. The majority of remaining affected individuals have recessively inherited forms of OI with the causative variants in the more recently discovered genes CRTAP, FKBP10, LEPRE1,PLOD2, PPIB, SERPINF1, SERPINH1 and SP7, or in other yet undiscovered genes. These advances in the molecular genetic diagnosis of OI prompted us to develop new guidelines for molecular testing and reporting of results in which we take into account that testing is also used to ‘exclude' OI when there is suspicion of non-accidental injury. Diagnostic flow, methods and reporting scenarios were discussed during an international workshop with 17 clinicians and scientists from 11 countries and converged in these best practice guidelines for the laboratory diagnosis of OI

    Dissociation between Mature Phenotype and Impaired Transmigration in Dendritic Cells from Heparanase-Deficient Mice

    Get PDF
    To reach the lymphatics, migrating dendritic cells (DCs) need to interact with the extracellular matrix (ECM). Heparanase, a mammalian endo-β-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and ECM. The role of heparanase in the physiology of bone marrow-derived DCs was studied in mutant heparanase knock-out (Hpse-KO) mice. Immature DCs from Hpse-KO mice exhibited a more mature phenotype; however their transmigration was significantly delayed, but not completely abolished, most probably due to the observed upregulation of MMP-14 and CCR7. Despite their mature phenotype, uptake of beads was comparable and uptake of apoptotic cells was more efficient in DCs from Hpse-KO mice. Heparanase is an important enzyme for DC transmigration. Together with CCR7 and its ligands, and probably MMP-14, heparanase controls DC trafficking

    Circulating Apoptotic Progenitor Cells in Patients with Congestive Heart Failure

    Get PDF
    Background: Circulating CD34+ endothelial progenitor cells (EPCs) are capable of differentiating into mature endothelial cells to assist in angiogenesis and vasculogenesis. We sought to quantify the numbers of apoptotic progenitors in patients with congestive heart failure. Methods and Results: Peripheral blood mononuclear cells were isolated by Ficoll density-gradient from 58 patients with various degrees of heart failure and 23 matched controls. Apoptosis in progenitor CD34+ cells was assessed using the Annexin V-PE/PI detection kit, and FACS analysis was performed with triple staining for CD34, annexin-V and propidium iodide. The percentage of early and late apoptotic progenitor cells was determined in the subject groups and was correlated with clinical characteristics. While there was no significant difference in total CD34 positive cells or early apoptotic progenitors between control subjects and CHF patients (p = 0.42) or between severe and mild/moderate CHF groups (p = 0.544), there was an elevated number of late apoptotic progenitors in the severe CHF group compared with the mild/moderate CHF group (p = 0.03). Late apoptotic progenitors were significantly increased in CHF patients as compared to matched controls. There was also an inverse correlation between late apoptotic progenitors and ejection fraction (r = 20.252, p = 0.028) as well as a positive association with NYHA class (r = 0.223, p = 0.046). Conclusion: Severe heart failure patients exhibited higher numbers of late apoptotic progenitors, and this was positivel

    Missense Mutations in the MEFV Gene Are Associated with Fibromyalgia Syndrome and Correlate with Elevated IL-1β Plasma Levels

    Get PDF
    BACKGROUND:Fibromyalgia syndrome (FMS), a common, chronic, widespread musculoskeletal pain disorder found in 2% of the general population and with a preponderance of 85% in females, has both genetic and environmental contributions. Patients and their parents have high plasma levels of the chemokines MCP-1 and eotaxin, providing evidence for both a genetic and an immunological/inflammatory origin for the syndrome (Zhang et al., 2008, Exp. Biol. Med. 233: 1171-1180). METHODS AND FINDINGS:In a search for a candidate gene affecting inflammatory pathways, among five screened in our patient samples (100 probands with FMS and their parents), we found 10 rare and one common alleles for MEFV, a gene in which various compound heterozygous mutations lead to Familial Mediterranean Fever (FMF). A total of 2.63 megabases of genomic sequence of the MEFV gene were scanned by direct sequencing. The collection of rare missense mutations (all heterozygotes and tested in the aggregate) had a significant elevated frequency of transmission to affecteds (p = 0.0085, one-sided, exact binomial test). Our data provide evidence that rare missense variants of the MEFV gene are, collectively, associated with risk of FMS and are present in a subset of 15% of FMS patients. This subset had, on average, high levels of plasma IL-1beta (p = 0.019) compared to FMS patients without rare variants, unaffected family members with or without rare variants, and unrelated controls of unknown genotype. IL-1beta is a cytokine associated with the function of the MEFV gene and thought to be responsible for its symptoms of fever and muscle aches. CONCLUSIONS:Since misregulation of IL-1beta expression has been predicted for patients with mutations in the MEFV gene, we conclude that patients heterozygous for rare missense variants of this gene may be predisposed to FMS, possibly triggered by environmental factors

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients
    corecore