16 research outputs found

    Lung epithelial stem cells and their niches : Fgf10 takes center stage

    Get PDF
    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF)

    Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs

    No full text
    ABSTRACT: A new generation of PNAs, so-called pseudocomplementary PNAs (pcPNAs), which are able to target the designated sites on duplex DNA with mixed sequence of purines and pyrimidines via double-duplex invasion mode, has recently been introduced. It has been demonstrated that appropriate pairs of decameric pcPNAs block an access of RNA polymerase to the corresponding promoter. Here, we show that this type of PNAs protects selected DNA sites containing all four nucleobases from the action of restriction enzymes and DNA methyltransferases. We have found that pcPNAs as short as octamers form stable and sequence-specific complexes with duplex DNA in a very salt-dependent manner. In accord with a strand-invasion mode of complex formation, the pcPNA binding proceeds much faster with supercoiled than with linear plasmids. The double-duplex invasion complexes selectively shield specific DNA sites from BclI restriction endonuclease and dam methylase. The pcPNA-assisted protection against enzymatic methylation is more efficient when the PNA-binding site embodies the methylase-recognition site rather than overlaps it. We conclude that pcPNAs may provide the robust tools allowing to sequence-specifically manipulate DNA duplexes in a virtually sequence-unrestricted manner. Synthetic reagents, which are capable of sequence-specific targeting of double-stranded DNA (dsDNA),1 are of signifi

    Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids

    No full text
    If adenines and thymines in two mutually complementary mixed-base peptide nucleic acid (PNA) oligomers are substituted with diaminopurines and thiouracils, respectively, so-called pseudocomplementary PNAs (pcPNAs) are created. Pairs of pcPNAs have recently demonstrated an ability to highly selectively target essentially any designated site on double-stranded DNA (dsDNA) by forming very stable PNA–DNA strand-displacement complexes via double duplex invasion (helix invasion). These properties of pcPNAs make them unique and very promising ligands capable of denying the access of DNA-binding proteins to dsDNA. To elucidate the sequence-unrestricted mechanism of sequence-specific dsDNA recognition by pcPNAs, we have studied the kinetics of formation of corresponding PNA–DNA complexes at various temperatures by the gel-shift assay. In parallel, the conditions for possible self-hybridization of pcPNA oligomers have been assayed by mixing curve (Job plot) and thermal melting experiments. The data indicate that, at physiological temperatures (≈37°C), the equilibrium is shifted toward the pairing of corresponding pcPNAs with each other. This finding explains a linear concentration dependence, within the submicromolar range, of the pcPNA invasion rate into dsDNA at 37°C. At elevated temperatures (>50°C), the rather unstable pcPNA duplexes dissociate, yielding the expected quadratic dependence for the rate of pcPNA invasion on the PNA concentration. The polycationic character of pcPNA pairs, carrying the duplicated number of protonated terminal PNA residues commonly used to increase the PNA solubility and binding affinity, also explains the self-inhibition of pcPNA invasion observed at higher PNA concentrations. Melting of pcPNA duplexes occurs with the integral transition enthalpies ranged from −235 to −280 kJ⋅mol(−1), contributing to an anomalously high activation energy of ≈150 kJ⋅mol(−1) found for the helix invasion of pcPNAs carrying four different nucleobases. A simplified kinetic model for pcPNAs helix invasion is proposed that interprets all unusual features of pcPNAs binding to dsDNA. Our findings have important implications for rational use of pcPNAs
    corecore