125 research outputs found

    Coexistence of ferromagnetism and superconductivity near quantum phase transition: The Heisenberg- to Ising-type crossover

    Full text link
    A microscopic mean-field theory of the phase coexistence between ferromagnetism and superconductivity in the weakly ferromagnetic itinerant electron system is constructed, while incorporating a realistic mechanism for superconducting pairing due to the exchange of critical spin fluctuations. The self-consistent solution of the resulting equations determines the superconducting transition temperature which is shown to depend strongly on the exchange splitting. The effect of phase crossover from isotropic (Heisenberg-like) to uniaxial (Ising-like) spin fluctuations near the quantum phase transition is analysed and the generic phase diagram is obtained. This scenario is then applied to the case of itinerant ferromagnet ZrZn2, which sheds light on the proposed phase diagram of this compound. Possible explanation of superconductivity in UGe2 is also discussed.Comment: 5 pages, 3 figure

    Hidden Quantum Critical Point in a Ferromagnetic Superconductor

    Full text link
    We consider a coexistence phase of both Ferromagnetism and superconductivity and solve the self-consistent mean-field equations at zero temperature. The superconducting gap is shown to vanish at the Stoner point whereas the magnetization doesn't. This indicates that the para-Ferro quantum critical point becomes a hidden critical point. The effective mass in such a phase gets enhanced whereas the spin wave stiffness is reduced as compared to the pure FM phase. The spin wave stiffness remains finite even at the para-Ferro quantum critical point.Comment: 4 pages, Phys. Rev. B (Rapid) accepte

    Diffusion coefficient of an inclusion in a liquid membrane supported by a solvent of arbitrary thickness

    Full text link
    The diffusion coefficient of a circular shaped inclusion in a liquid membrane is investigated by taking into account the interaction between membranes and bulk solvents of arbitrary thickness. As illustrative examples, the diffusion coefficients of two types of inclusions - a circular domain composed of fluid with the same viscosity as the host membrane and that of a polymer chain embedded in the membrane are studied.The diffusion coefficients are expressed in terms of the hydrodynamic screening lengths which vary according to the solvent thickness. When the membrane fluid is dragged by the solvent of finite thickness, via stick boundary conditions, multiple hydrodynamic screening lengths together with the weight factors to the diffusion coefficients are obtained from the dispersion relation. The condition for which the diffusion coefficients can be approximated by the expression including only a single hydrodynamic screening length are also shown.Comment: 6 figures; Physical Review E 201

    Conductance Increase by Electron-Phonon Interaction in Quantum Wires

    Full text link
    We investigate the influence of electron-phonon interactions on the DC-conductance Γ\Gamma of a quantum wire in the limit of one occupied subband. At zero temperature, a Tomonaga-Luttinger-like renormalization of Γ\Gamma to a value slightly larger than 2e2/h2e^{2}/h is calculated for a realistic quantum wire model.Comment: 12 pages RevTeX, no figure. Appears in Phys. Rev.

    Theory of Disordered Itinerant Ferromagnets I: Metallic Phase

    Full text link
    A comprehensive theory for electronic transport in itinerant ferromagnets is developed. We first show that the Q-field theory used previously to describe a disordered Fermi liquid also has a saddle-point solution that describes a ferromagnet in a disordered Stoner approximation. We calculate transport coefficients and thermodynamic susceptibilities by expanding about the saddle point to Gaussian order. At this level, the theory generalizes previous RPA-type theories by including quenched disorder. We then study soft-mode effects in the ferromagnetic state in a one-loop approximation. In three-dimensions, we find that the spin waves induce a square-root frequency dependence of the conductivity, but not of the density of states, that is qualitatively the same as the usual weak-localization effect induced by the diffusive soft modes. In contrast to the weak-localization anomaly, this effect persists also at nonzero temperatures. In two-dimensions, however, the spin waves do not lead to a logarithmic frequency dependence. This explains experimental observations in thin ferromagnetic films, and it provides a basis for the construction of a simple effective field theory for the transition from a ferromagnetic metal to a ferromagnetic insulator.Comment: 15pp., REVTeX, 2 eps figs, final version as publishe

    Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation

    Get PDF
    Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown that the original expressions for exchange integrals based on the magnetic force theorem (J. Phys. F14 L125 (1984)) are optimal for the calculations of the magnon spectrum whereas static response function is better described by the ``renormalized'' magnetic force theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC

    Fluctuation Induced Non-Fermi Liquid Behavior near a Quantum Phase Transition in Itinerant Electron Systems

    Full text link
    The signature for a non-Fermi liquid behavior near a quantum phase transition has been observed in thermal and transport properties of many metallic systems at low temperatures. In the present work we consider specific examples of itinerant ferromagnet as well as antiferromagnet in the limit of vanishing transition temperature. The temperature variation of spin susceptibility, electrical resistivity, specific heat, and NMR relaxation rates at low temperatures is calculated in the limit of infinite exchange enhancement within the frame work of a self consistent spin fluctuation theory. The resulting non-Fermi liquid behavior is due to the presence of the low lying critically damped spin fluctuations in these systems. The theory presented here gives the leading low temperature behavior, as it turns out that the fluctuation correlation term is always smaller than the mean fluctuation field term in three as well as in two space dimensions. A comparison with illustrative experimental results of these properties in some typical systems has been done. Finally we make some remarks on the effect of disorder in these systems.Comment: File RevTex, 7 Figures available on request, Abstract and text modified, To appear in Phys. Rev.

    Theory of Non-Reciprocal Optical Effects in Antiferromagnets: The Case Cr_2O_3

    Full text link
    A microscopic model of non-reciprocal optical effects in antiferromagnets is developed by considering the case of Cr_2O_3 where such effects have been observed. These effects are due to a direct coupling between light and the antiferromagnetic order parameter. This coupling is mediated by the spin-orbit interaction and involves an interplay between the breaking of inversion symmetry due to the antiferromagnetic order parameter and the trigonal field contribution to the ligand field at the magnetic ion. We evaluate the matrix elements relevant for the non-reciprocal second harmonic generation and gyrotropic birefringence.Comment: accepted for publication in Phys. Rev.

    Magnon Damping by magnon-phonon coupling in Manganese Perovskites

    Full text link
    Inelastic neutron scattering was used to systematically investigate the spin-wave excitations (magnons) in ferromagnetic manganese perovskites. In spite of the large differences in the Curie temperatures (TCT_Cs) of different manganites, their low-temperature spin waves were found to have very similar dispersions with the zone boundary magnon softening. From the wavevector dependence of the magnon lifetime effects and its correlation with the dispersions of the optical phonon modes, we argue that a strong magneto-elastic coupling is responsible for the observed low temperature anomalous spin dynamical behavior of the manganites.Comment: 11 pages, 4 figure

    Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model

    Full text link
    We study the vicinal surface of the restricted solid-on-solid model coupled with the Langmuir adsorbates which we regard as two-dimensional lattice gas without lateral interaction. The effect of the vapor pressure of the adsorbates in the environmental phase is taken into consideration through the chemical potential. We calculate the surface free energy ff, the adsorption coverage Θ\Theta, the step tension γ\gamma, and the step stiffness γ~\tilde{\gamma} by the transfer matrix method combined with the density-matrix algorithm. Detailed step-density-dependence of ff and Θ\Theta is obtained. We draw the roughening transition curve in the plane of the temperature and the chemical potential of adsorbates. We find the multi-reentrant roughening transition accompanying the inverse roughening phenomena. We also find quasi-reentrant behavior in the step tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.
    corecore