137 research outputs found

    Modeling the Dynamic Currents Recorded under Action Potential-Clamp in Cardiac Myocytes

    Get PDF

    Spontaneous Calcium Release in Cardiac Myocytes: Store Overload and Electrical Dynamics

    Get PDF
    Heart disease is the leading cause of mortality in the United States. One cause of heart arrhythmia is calcium (Ca2+) mishandling in cardiac muscle cells. We adapt Izu\u27s et al. mathematical reaction-diffusion model of calcium in cardiac muscle cells, or cardiomyocytes implemented by Gobbert, and analyzed in Coulibaly et al. to include calcium being released from the sarcoplasmic reticulum (SR), the effects of buffers in the SR, particularly calsequestrin, and the effects of Ca2+ influx due to voltage across the cell membrane. Based on simulations of the model implemented in parallel using MPI, our findings aligned with known biological models and principles, giving us a thorough understanding of several factors that influence Ca2+ dynamics in cardiac myocytes. Specifically, dynamic calcium store will cap previous calcium blow-up seen in the model. Calcium channels located in spatial opposition of calcium release units produce more predictable intracellular calcium propagation. And we used multi-parametric calcium dynamics tables, which act as a multidimensional bifurcation diagram, to visualize parameter boundaries between different biophysical dynamics

    Deranged sodium to sudden death

    Get PDF
    In February 2014, a group of scientists convened as part of the University of California Davis Cardiovascular Symposium to bring together experimental and mathematical modelling perspectives and discuss points of consensus and controversy on the topic of sodium in the heart. This paper summarizes the topics of presentation and discussion from the symposium, with a focus on the role of aberrant sodium channels and abnormal sodium homeostasis in cardiac arrhythmias and pharmacotherapy from the subcellular scale to the whole heart. Two following papers focus on Na⁺ channel structure, function and regulation, and Na⁺/Ca²⁺ exchange and Na⁺/K⁺ ATPase. The UC Davis Cardiovascular Symposium is a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The focus on Na⁺ in the 2014 symposium stemmed from the multitude of recent studies that point to the importance of maintaining Na⁺ homeostasis in the heart, as disruption of homeostatic processes are increasingly identified in cardiac disease states. Understanding how disruption in cardiac Na⁺-based processes leads to derangement in multiple cardiac components at the level of the cell and to then connect these perturbations to emergent behaviour in the heart to cause disease is a critical area of research. The ubiquity of disruption of Na⁺ channels and Na⁺ homeostasis in cardiac disorders of excitability and mechanics emphasizes the importance of a fundamental understanding of the associated mechanisms and disease processes to ultimately reveal new targets for human therapy.Centro de Investigaciones Cardiovasculare
    corecore