2,253 research outputs found

    Scalar and tensorial topological matter coupled to (2+1)-dimensional gravity:A.Classical theory and global charges

    Full text link
    We consider the coupling of scalar topological matter to (2+1)-dimensional gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor field. We carry out a canonical analysis of the classical theory, investigating its sectors and solutions. We show that the model admits both BTZ-like black-hole solutions and homogeneous/inhomogeneous FRW cosmological solutions.We also investigate the global charges associated with the model and show that the algebra of charges is the extension of the Kac-Moody algebra for the field-rigid gauge charges, and the Virasoro algebrafor the diffeomorphism charges. Finally, we show that the model can be written as a generalized Chern-Simons theory, opening the perspective for its formulation as a generalized higher gauge theory.Comment: 40 page

    Preliminary Measurements of the Motion of Arcjet Current Channel Using Inductive Magnetic Probes

    Get PDF
    This paper covers the design and first measurements of non-perturbative, external inductive magnetic diagnostics for arcjet constrictors which can measure the motion of the arc current channel. These measurements of arc motion are motivated by previous simulations using the ARC Heater Simulator (ARCHeS), which predicted unsteady arc motion due to the magnetic kink instability. Measurements of the kink instability are relevant to characterizing motion of the enthalpy profile of the arcjet, the arcjet operational stability, and electrode damage due to associated arc detachment events. These first measurements indicate 4 mm oscillations at 0.5-2 kHz of the current profile

    Exploring the vicinity of the Bogomol'nyi-Prasad-Sommerfield bound

    Get PDF
    We investigate systems of real scalar fields in bidimensional spacetime, dealing with potentials that are small modifications of potentials that admit supersymmetric extensions. The modifications are controlled by a real parameter, which allows implementing a perturbation procedure when such parameter is small. The approach allows obtaining the energy and topological charge in closed forms, up to first order in the parameter. We illustrate the procedure with some examples. In particular, we show how to remove the degeneracy in energy for the one-field and the two-field solutions that appear in a model of two real scalar fields.Comment: Revtex, 9 pages, To be published in J. Phys.

    Directly tracing the vertical stratification of molecules in protoplanetary disks

    Full text link
    We aim to directly trace the vertical location of the emitting surface of multiple molecular tracers in protoplanetary disks. Our sample of disks includes Elias 2-27, WaOph 6 and the sources targeted by the MAPS ALMA Large Program. The set of molecules studied include CO isotopologues in various transitions, HCN, CN, H2CO, HCO+, C2H and c-C3H2. The vertical emitting region is determined directly from the channel maps, implementing accurate masking of the channel emission to recover the vertical location of the emission surface even at large radial distances from the star and for low-SNR lines. The vertical location of the emitting layer is obtained for 4-10 lines in each disk. IM Lup, HD163296 and MWC 480 12CO and 13CO show vertical modulations, which are coincident with dust gaps and kinematical perturbations. We also present estimates of the gas pressure scale height in the disks from the MAPS sample. Compared to physical-chemical models we find good agreement with the vertical location of CO isotopologues. In HD 163296 CN and HCN trace a similar intermediate layer, for the other disks, the UV flux tracers and the vertical profiles of HCN and C2H are lower than predicted in theoretical models. HCN and H2CO show a highly structured vertical profile, possibly indicative of different formation pathways. It is possible to trace the vertical locations of multiple molecular species that trace a wide variety of physical and chemical disk properties. The distribution of CO isotopologues are found at a wide range of vertical heights z/r=z/r = 0.5-0.05. Other molecular lines are mostly found at z/rz/r \leq 0.15. The vertical layering of molecules is in agreement with theory in some systems, but not in all, therefore dedicated chemical-physical models are needed to further study and understand the emission surfaces.Comment: Accepted for publication in A&A. 29 pages, 28 figure

    Extensions, expansions, Lie algebra cohomology and enlarged superspaces

    Full text link
    After briefly reviewing the methods that allow us to derive consistently new Lie (super)algebras from given ones, we consider enlarged superspaces and superalgebras, their relevance and some possible applications.Comment: 9 pages. Invited talk delivered at the EU RTN Workshop, Copenhagen, Sep. 15-19 and at the Argonne Workshop on Branes and Generalized Dynamics, Oct. 20-24, 2003. Only change: wrong number of a reference correcte

    The classical supersymmetric Coulomb problem

    Full text link
    After setting up a general model for supersymmetric classical mechanics in more than one dimension we describe systems with centrally symmetric potentials and their Poisson algebra. We then apply this information to the investigation and solution of the supersymmetric Coulomb problem, specified by an 1/|x| repulsive bosonic potential.Comment: 25 pages, 2 figures; reference added, some minor modification

    Exact Solutions for Domain Walls in Coupled Complex Ginzburg - Landau Equations

    Full text link
    The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for the evolution of slowly varying wave packets in nonlinear dissipative media. A front (shock) is a transient layer between a plane-wave state and a zero background. We report exact solutions for domain walls, i.e., pairs of fronts with opposite polarities, in a system of two coupled CGLEs, which describe transient layers between semi-infinite domains occupied by each component in the absence of the other one. For this purpose, a modified Hirota bilinear operator, first proposed by Bekki and Nozaki, is employed. A novel factorization procedure is applied to reduce the intermediate calculations considerably. The ensuing system of equations for the amplitudes and frequencies is solved by means of computer-assisted algebra. Exact solutions for mutually-locked front pairs of opposite polarities, with one or several free parameters, are thus generated. The signs of the cubic gain/loss, linear amplification/attenuation, and velocity of the coupled-front complex can be adjusted in a variety of configurations. Numerical simulations are performed to study the stability properties of such fronts.Comment: Journal of the Physical Society of Japan, in pres

    Accelerated expansion of a universe containing a self-interacting Bose-Einstein gas

    Full text link
    Acceleration of the universe is obtained from a model of non-relativistic particles with a short-range attractive interaction, at low enough temperature to produce a Bose-Einstein condensate. Conditions are derived for negative-pressure behavior. In particular, we show that a phantom-accelerated regime at the beginning of the universe solves the horizon problem, consistently with nucleosynthesis.Comment: 18 pages, 4 figure

    Compactifications with S-Duality Twists

    Full text link
    We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills coupled to supergravity. The reduction cannot be done on the action itself, but must be done either on the field equations or on a duality invariant form of the action, such as one in the doubled formalism in which potentials are introduced for both electric and magnetic fields. The resulting theory in odd-dimensions has massive form fields satisfying a self-duality condition dAmAdA \sim m*A. We construct such theories in D=3,5,7.Comment: Latex, 26 pages. References adde
    corecore