455 research outputs found

    One-loop kink mass shifts: a computational approach

    Get PDF
    In this paper we develop a procedure to compute the one-loop quantum correction to the kink masses in generic (1+1)-dimensional one-component scalar field theoretical models. The procedure uses the generalized zeta function regularization method helped by the Gilkey-de Witt asymptotic expansion of the heat function via Mellin's transform. We find a formula for the one-loop kink mass shift that depends only on the part of the energy density with no field derivatives, evaluated by means of a symbolic software algorithm that automates the computation. The improved algorithm with respect to earlier work in this subject has been tested in the sine-Gordon and λ(ϕ)24\lambda(\phi)_2^4 models. The quantum corrections of the sG-soliton and λ(ϕ4)2\lambda(\phi^4)_2-kink masses have been estimated with a relative error of 0.00006% and 0.00007% respectively. Thereafter, the algorithm is applied to other models. In particular, an interesting one-parametric family of double sine-Gordon models interpolating between the ordinary sine-Gordon and a re-scaled sine-Gordon model is addressed. Another one-parametric family, in this case of ϕ6\phi^6 models, is analyzed. The main virtue of our procedure is its versatility: it can be applied to practically any type of relativistic scalar field models supporting kinks.Comment: 35 pages, 6 figures, to be published in Nuclear Physics

    Changing shapes: adiabatic dynamics of composite solitary waves

    Full text link
    We discuss the solitary wave solutions of a particular two-component scalar field model in two-dimensional Minkowski space. These solitary waves involve one, two or four lumps of energy. The adiabatic motion of these composite non-linear non-dispersive waves points to variations in shape.Comment: 21 pages, 15 figures. To appear in Physica D: Nonlinear Phenomen

    On the semiclassical mass of S2{\mathbb S}^2-kinks

    Full text link
    One-loop mass shifts to the classical masses of stable kinks arising in a massive non-linear S2{\mathbb S}^2-sigma model are computed. Ultraviolet divergences are controlled using the heat kernel/zeta function regularization method. A comparison between the results achieved from exact and high-temperature asymptotic heat traces is analyzed in depth.Comment: RevTex file, 15 pages, 2 figures. Version to appear in Journal of Physics

    Generalized MSTB Models: Structure and kink varieties

    Get PDF
    In this paper we describe the structure of a class of two-component scalar field models in a (1+1) Minkowskian space-time which generalize the well-known Montonen-Sarker-Trullinger-Bishop -hence MSTB- model. This class includes all the field models whose static field equations are equivalent to the Newton equations of two-dimensional type I Liouville mechanical systems with a discrete set of instability points. We offer a systematic procedure to characterize these models and to identify the solitary wave or kink solutions as homoclinic or heteroclinic trajectories in the analogous mechanical system. This procedure is applied to a one-parametric family of generalized MSTB models with a degree-eight polynomial as potential energy density.Comment: 46 pages, 18 figures, corrected typo

    On domain walls in a Ginzburg-Landau non-linear S^2-sigma model

    Get PDF
    The domain wall solutions of a Ginzburg-Landau non-linear S2S^2-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families of composite - one topological, the other non-topological- walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure

    New models for two real scalar fields and their kinklike solutions

    Get PDF
    In this work we study the presence of kinks in models described by two real scalar fields in bi-dimensional space-time. We generate new two-field models, constructed from distinct but important one-field models, and we solve them with techniques that we introduce in the current work. We illustrate the results with several examples of current interest to high energy physics.Comment: 8 pages, 6 figures; To appear in Adv. High Energy Phy
    • …
    corecore